一种基于三层HfOx组成调控的离子门控突触忆阻器

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lanqing Zou, Junming Zhang, Yunhui Yi, Jiawang Ren, Huajun Sun, Chuqian Zhu, Jiyang Xu, Sheng Hu, Lei Ye, Weiming Cheng, Qiang He and Xiangshui Miao
{"title":"一种基于三层HfOx组成调控的离子门控突触忆阻器","authors":"Lanqing Zou, Junming Zhang, Yunhui Yi, Jiawang Ren, Huajun Sun, Chuqian Zhu, Jiyang Xu, Sheng Hu, Lei Ye, Weiming Cheng, Qiang He and Xiangshui Miao","doi":"10.1039/D4TC04564E","DOIUrl":null,"url":null,"abstract":"<p >In this work, we developed tri-layer HfO<small><sub><em>x</em></sub></small>/HfO<small><sub>2</sub></small>/HfO<small><sub><em>x</em></sub></small> memristors that exhibit high consistency and good linearity, making them suitable for high-efficiency neuromorphic computing. The HfO<small><sub>2</sub></small> intermediate layer serves as an ion-gating layer, enabling the precise localization and shaping of conductive pathways while regulating oxygen vacancy (<em>V</em><small><sub>O</sub></small>) migration. By optimizing the <em>V</em><small><sub>O</sub></small> difference Δ (Δ = 2 − <em>x</em>) and the ion-gating HfO<small><sub>2</sub></small> interlayer, we were able to precisely control the formation and rupture of conductive filaments (CFs) within the HfO<small><sub>2</sub></small> interlayer, leading to improved consistency, linearity and continuity of resistance variation. Notably, the HfO<small><sub>1.7</sub></small>/HfO<small><sub>2</sub></small>/HfO<small><sub>1.7</sub></small> (T-HfO<small><sub>1.7</sub></small>) device demonstrated the highest low resistance consistency (1.7%) for memory function. Furthermore, this device exhibited essential synaptic functions, including long-term potentiation (LTP), paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). The conductance modulation process of T-HfO<small><sub>1.7</sub></small> achieves high linearity (<em>α</em><small><sub>LTP</sub></small> = 1.55). Moreover, a Hopfield Neural Network (HNN) constructed using this device achieved a high image recognition accuracy of 95.6%. This work introduces a straightforward approach to improve the consistency and linearity of memristive behavior, paving the way for enhanced performance in neuromorphic applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 10","pages":" 5326-5331"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ion-gating synaptic memristor based on tri-layer HfOx composition regulation†\",\"authors\":\"Lanqing Zou, Junming Zhang, Yunhui Yi, Jiawang Ren, Huajun Sun, Chuqian Zhu, Jiyang Xu, Sheng Hu, Lei Ye, Weiming Cheng, Qiang He and Xiangshui Miao\",\"doi\":\"10.1039/D4TC04564E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, we developed tri-layer HfO<small><sub><em>x</em></sub></small>/HfO<small><sub>2</sub></small>/HfO<small><sub><em>x</em></sub></small> memristors that exhibit high consistency and good linearity, making them suitable for high-efficiency neuromorphic computing. The HfO<small><sub>2</sub></small> intermediate layer serves as an ion-gating layer, enabling the precise localization and shaping of conductive pathways while regulating oxygen vacancy (<em>V</em><small><sub>O</sub></small>) migration. By optimizing the <em>V</em><small><sub>O</sub></small> difference Δ (Δ = 2 − <em>x</em>) and the ion-gating HfO<small><sub>2</sub></small> interlayer, we were able to precisely control the formation and rupture of conductive filaments (CFs) within the HfO<small><sub>2</sub></small> interlayer, leading to improved consistency, linearity and continuity of resistance variation. Notably, the HfO<small><sub>1.7</sub></small>/HfO<small><sub>2</sub></small>/HfO<small><sub>1.7</sub></small> (T-HfO<small><sub>1.7</sub></small>) device demonstrated the highest low resistance consistency (1.7%) for memory function. Furthermore, this device exhibited essential synaptic functions, including long-term potentiation (LTP), paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). The conductance modulation process of T-HfO<small><sub>1.7</sub></small> achieves high linearity (<em>α</em><small><sub>LTP</sub></small> = 1.55). Moreover, a Hopfield Neural Network (HNN) constructed using this device achieved a high image recognition accuracy of 95.6%. This work introduces a straightforward approach to improve the consistency and linearity of memristive behavior, paving the way for enhanced performance in neuromorphic applications.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 10\",\"pages\":\" 5326-5331\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04564e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04564e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们开发了具有高一致性和良好线性的三层HfOx/HfO2/HfOx忆阻器,使其适用于高效的神经形态计算。HfO2中间层作为离子门控层,在调节氧空位(VO)迁移的同时,实现了导电途径的精确定位和塑造。通过优化VO差Δ (Δ = 2−x)和离子门控HfO2中间层,我们能够精确控制HfO2中间层内导电丝(CFs)的形成和断裂,从而提高电阻变化的一致性、线性度和连续性。值得注意的是,HfO1.7/HfO2/HfO1.7 (T-HfO1.7)器件在记忆功能方面表现出最高的低电阻一致性(1.7%)。此外,该装置还表现出必要的突触功能,包括长期增强(LTP)、成对脉冲促进(PPF)和spike- time -dependent plasticity (STDP)。T-HfO1.7的电导调制过程具有较高的线性度(αLTP = 1.55)。利用该装置构建的Hopfield神经网络(HNN)的图像识别准确率达到95.6%。这项工作介绍了一种直接的方法来提高记忆行为的一致性和线性,为增强神经形态应用的性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An ion-gating synaptic memristor based on tri-layer HfOx composition regulation†

An ion-gating synaptic memristor based on tri-layer HfOx composition regulation†

In this work, we developed tri-layer HfOx/HfO2/HfOx memristors that exhibit high consistency and good linearity, making them suitable for high-efficiency neuromorphic computing. The HfO2 intermediate layer serves as an ion-gating layer, enabling the precise localization and shaping of conductive pathways while regulating oxygen vacancy (VO) migration. By optimizing the VO difference Δ (Δ = 2 − x) and the ion-gating HfO2 interlayer, we were able to precisely control the formation and rupture of conductive filaments (CFs) within the HfO2 interlayer, leading to improved consistency, linearity and continuity of resistance variation. Notably, the HfO1.7/HfO2/HfO1.7 (T-HfO1.7) device demonstrated the highest low resistance consistency (1.7%) for memory function. Furthermore, this device exhibited essential synaptic functions, including long-term potentiation (LTP), paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP). The conductance modulation process of T-HfO1.7 achieves high linearity (αLTP = 1.55). Moreover, a Hopfield Neural Network (HNN) constructed using this device achieved a high image recognition accuracy of 95.6%. This work introduces a straightforward approach to improve the consistency and linearity of memristive behavior, paving the way for enhanced performance in neuromorphic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信