基于垂直扩展栅极场效应晶体管(VEG-FET)的氢气传感器的设计与分析:综合建模与仿真方法

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pramod Martha, Mayank Kohli, Rahul Kumar and Santosh Kumar Behera
{"title":"基于垂直扩展栅极场效应晶体管(VEG-FET)的氢气传感器的设计与分析:综合建模与仿真方法","authors":"Pramod Martha, Mayank Kohli, Rahul Kumar and Santosh Kumar Behera","doi":"10.1039/D4TC04574B","DOIUrl":null,"url":null,"abstract":"<p >In this study, a novel vertically extended gate field effect transistor (VEG-FET)-based hydrogen (H<small><sub>2</sub></small>) gas sensor with a look-up-table (LUT) based modeling and simulation approach is presented. The gate area is extended vertically without affecting the intrinsic parameters to provide a larger area for the adsorption of H<small><sub>2</sub></small> molecules without increasing the sensor footprint. The gate electrode was vertically extended by depositing platinum (Pt) over a channel created in Parylene-C polymer. An analytical model was constructed for the interaction of H<small><sub>2</sub></small> gas with platinum (Pt) to determine the change in the work function (<em>Φ</em><small><sub>M</sub></small>). The Pt work function lowered by 16% for input hydrogen gas pressure (<em>P</em><small><sub>H<small><sub>2</sub></small></sub></small>) of 0 to 0.5 torr. The Pt–H<small><sub>2</sub></small> interaction information is passed to a technology computer-aided design (TCAD) tool for VEG-FET design and simulation. The drain current (<em>I</em><small><sub>DS</sub></small>) of the VEG-FET varies from 150.7 mA without H<small><sub>2</sub></small> gas to 310.3 mA at 0.5 torr hydrogen gas pressure at gate to source (<em>V</em><small><sub>GS</sub></small>) and drain to source (<em>V</em><small><sub>DS</sub></small>) voltage of 3 V. Both bioreaction and TCAD results are passed to Cadence Virtuoso for a complete gas sensor with read-out circuit simulation using the LUT method. A VEG-FET based common source amplifier with resistive load was designed and simulated, and the output voltage (<em>V</em><small><sub>out</sub></small>) varied by ∼40% for <em>P</em><small><sub>H<small><sub>2</sub></small></sub></small> = 0.5 torr.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 10","pages":" 5110-5118"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of a vertically extended gate field effect transistor (VEG-FET)-based hydrogen gas sensor: a comprehensive modeling and simulation approach\",\"authors\":\"Pramod Martha, Mayank Kohli, Rahul Kumar and Santosh Kumar Behera\",\"doi\":\"10.1039/D4TC04574B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, a novel vertically extended gate field effect transistor (VEG-FET)-based hydrogen (H<small><sub>2</sub></small>) gas sensor with a look-up-table (LUT) based modeling and simulation approach is presented. The gate area is extended vertically without affecting the intrinsic parameters to provide a larger area for the adsorption of H<small><sub>2</sub></small> molecules without increasing the sensor footprint. The gate electrode was vertically extended by depositing platinum (Pt) over a channel created in Parylene-C polymer. An analytical model was constructed for the interaction of H<small><sub>2</sub></small> gas with platinum (Pt) to determine the change in the work function (<em>Φ</em><small><sub>M</sub></small>). The Pt work function lowered by 16% for input hydrogen gas pressure (<em>P</em><small><sub>H<small><sub>2</sub></small></sub></small>) of 0 to 0.5 torr. The Pt–H<small><sub>2</sub></small> interaction information is passed to a technology computer-aided design (TCAD) tool for VEG-FET design and simulation. The drain current (<em>I</em><small><sub>DS</sub></small>) of the VEG-FET varies from 150.7 mA without H<small><sub>2</sub></small> gas to 310.3 mA at 0.5 torr hydrogen gas pressure at gate to source (<em>V</em><small><sub>GS</sub></small>) and drain to source (<em>V</em><small><sub>DS</sub></small>) voltage of 3 V. Both bioreaction and TCAD results are passed to Cadence Virtuoso for a complete gas sensor with read-out circuit simulation using the LUT method. A VEG-FET based common source amplifier with resistive load was designed and simulated, and the output voltage (<em>V</em><small><sub>out</sub></small>) varied by ∼40% for <em>P</em><small><sub>H<small><sub>2</sub></small></sub></small> = 0.5 torr.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 10\",\"pages\":\" 5110-5118\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04574b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04574b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,提出了一种新型的基于垂直扩展栅极场效应晶体管(VEG-FET)的氢气(H2)气体传感器,该传感器具有基于查找表(LUT)的建模和仿真方法。栅极区域在不影响本征参数的情况下垂直延伸,在不增加传感器足迹的情况下为H2分子提供更大的吸附面积。栅极通过在聚苯乙烯- c聚合物中形成的通道上沉积铂(Pt)而垂直延伸。建立了H2气体与铂(Pt)相互作用的解析模型,以确定功函数的变化(ΦM)。当输入氢气压力(PH2)为0 ~ 0.5 torr时,Pt功函数降低16%。Pt-H2相互作用信息传递给技术计算机辅助设计(TCAD)工具,用于VEG-FET的设计和仿真。在无H2气体时,VEG-FET的漏极电流(IDS)从150.7 mA变化到0.5 torr氢气压力下,栅极到源极(VGS)和漏极到源极(VDS)电压为3 V时的310.3 mA。生物反应和TCAD结果都传递给Cadence Virtuoso,使用LUT方法进行完整的气体传感器读出电路模拟。设计并仿真了一种基于VEG-FET的阻性负载共源放大器,当PH2 = 0.5 torr时,输出电压(Vout)变化约40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and analysis of a vertically extended gate field effect transistor (VEG-FET)-based hydrogen gas sensor: a comprehensive modeling and simulation approach

Design and analysis of a vertically extended gate field effect transistor (VEG-FET)-based hydrogen gas sensor: a comprehensive modeling and simulation approach

In this study, a novel vertically extended gate field effect transistor (VEG-FET)-based hydrogen (H2) gas sensor with a look-up-table (LUT) based modeling and simulation approach is presented. The gate area is extended vertically without affecting the intrinsic parameters to provide a larger area for the adsorption of H2 molecules without increasing the sensor footprint. The gate electrode was vertically extended by depositing platinum (Pt) over a channel created in Parylene-C polymer. An analytical model was constructed for the interaction of H2 gas with platinum (Pt) to determine the change in the work function (ΦM). The Pt work function lowered by 16% for input hydrogen gas pressure (PH2) of 0 to 0.5 torr. The Pt–H2 interaction information is passed to a technology computer-aided design (TCAD) tool for VEG-FET design and simulation. The drain current (IDS) of the VEG-FET varies from 150.7 mA without H2 gas to 310.3 mA at 0.5 torr hydrogen gas pressure at gate to source (VGS) and drain to source (VDS) voltage of 3 V. Both bioreaction and TCAD results are passed to Cadence Virtuoso for a complete gas sensor with read-out circuit simulation using the LUT method. A VEG-FET based common source amplifier with resistive load was designed and simulated, and the output voltage (Vout) varied by ∼40% for PH2 = 0.5 torr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信