{"title":"用机器学习和化学嵌入构造多组分聚类展开","authors":"Yann L. Müller, Anirudh Raju Natarajan","doi":"10.1038/s41524-025-01543-3","DOIUrl":null,"url":null,"abstract":"<p>Cluster expansions are commonly employed as surrogate models to link the electronic structure of an alloy to its finite-temperature properties. Using cluster expansions to model materials with several alloying elements is challenging due to a rapid increase in the number of fitting parameters and training set size. We introduce the <i>embedded cluster expansion</i> (eCE) formalism that enables the parameterization of accurate on-lattice surrogate models for alloys containing several chemical species. The eCE model simultaneously learns a low dimensional embedding of site basis functions along with the weights of an energy model. A prototypical senary alloy comprised of elements in groups 5 and 6 of the periodic table is used to demonstrate that eCE models can accurately reproduce ordering energetics of complex alloys without a significant increase in model complexity. Further, eCE models can leverage similarities between chemical elements to efficiently extrapolate into compositional spaces that are not explicitly included in the training dataset. The eCE formalism presented in this study unlocks the possibility of employing cluster expansion models to study multicomponent alloys containing several alloying elements.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"67 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing multicomponent cluster expansions with machine-learning and chemical embedding\",\"authors\":\"Yann L. Müller, Anirudh Raju Natarajan\",\"doi\":\"10.1038/s41524-025-01543-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cluster expansions are commonly employed as surrogate models to link the electronic structure of an alloy to its finite-temperature properties. Using cluster expansions to model materials with several alloying elements is challenging due to a rapid increase in the number of fitting parameters and training set size. We introduce the <i>embedded cluster expansion</i> (eCE) formalism that enables the parameterization of accurate on-lattice surrogate models for alloys containing several chemical species. The eCE model simultaneously learns a low dimensional embedding of site basis functions along with the weights of an energy model. A prototypical senary alloy comprised of elements in groups 5 and 6 of the periodic table is used to demonstrate that eCE models can accurately reproduce ordering energetics of complex alloys without a significant increase in model complexity. Further, eCE models can leverage similarities between chemical elements to efficiently extrapolate into compositional spaces that are not explicitly included in the training dataset. The eCE formalism presented in this study unlocks the possibility of employing cluster expansion models to study multicomponent alloys containing several alloying elements.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01543-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01543-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Constructing multicomponent cluster expansions with machine-learning and chemical embedding
Cluster expansions are commonly employed as surrogate models to link the electronic structure of an alloy to its finite-temperature properties. Using cluster expansions to model materials with several alloying elements is challenging due to a rapid increase in the number of fitting parameters and training set size. We introduce the embedded cluster expansion (eCE) formalism that enables the parameterization of accurate on-lattice surrogate models for alloys containing several chemical species. The eCE model simultaneously learns a low dimensional embedding of site basis functions along with the weights of an energy model. A prototypical senary alloy comprised of elements in groups 5 and 6 of the periodic table is used to demonstrate that eCE models can accurately reproduce ordering energetics of complex alloys without a significant increase in model complexity. Further, eCE models can leverage similarities between chemical elements to efficiently extrapolate into compositional spaces that are not explicitly included in the training dataset. The eCE formalism presented in this study unlocks the possibility of employing cluster expansion models to study multicomponent alloys containing several alloying elements.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.