器件非理想性感知内存中计算阵列架构:直接电压传感、I-V对称位元和填充阵列

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jianzi Jin;Shifan Gao;Cimang Lu;Xiang Qiu;Yi Zhao
{"title":"器件非理想性感知内存中计算阵列架构:直接电压传感、I-V对称位元和填充阵列","authors":"Jianzi Jin;Shifan Gao;Cimang Lu;Xiang Qiu;Yi Zhao","doi":"10.1109/JXCDC.2025.3539470","DOIUrl":null,"url":null,"abstract":"A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), the costly multiplication postprocessing can be efficiently performed with the analog operation inside the array. The BL-differential voltage output scheme has two unique invariances. First, the so-called scaling invariance allows the weight matrix to be scaled to the full range for every BL. Second, the shifting invariance allows the weight to be tuned to a larger conductance with a better I–V linearity. Combined with the distributed padding, input voltage loss can also be reduced by suppressing the IR drop. The above schemes can significantly improve the linearity and reduce the relative weight error by >50%, as confirmed in applications from MNIST to face recognition, making it a promising solution for advanced artificial intelligence (AI) and memory computing applications.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"19-24"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10876176","citationCount":"0","resultStr":"{\"title\":\"Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array\",\"authors\":\"Jianzi Jin;Shifan Gao;Cimang Lu;Xiang Qiu;Yi Zhao\",\"doi\":\"10.1109/JXCDC.2025.3539470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), the costly multiplication postprocessing can be efficiently performed with the analog operation inside the array. The BL-differential voltage output scheme has two unique invariances. First, the so-called scaling invariance allows the weight matrix to be scaled to the full range for every BL. Second, the shifting invariance allows the weight to be tuned to a larger conductance with a better I–V linearity. Combined with the distributed padding, input voltage loss can also be reduced by suppressing the IR drop. The above schemes can significantly improve the linearity and reduce the relative weight error by >50%, as confirmed in applications from MNIST to face recognition, making it a promising solution for advanced artificial intelligence (AI) and memory computing applications.\",\"PeriodicalId\":54149,\"journal\":{\"name\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"volume\":\"11 \",\"pages\":\"19-24\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10876176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10876176/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10876176/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

为了提高模拟计算精度,设计了一种电压感应内存计算(CIM)架构,并成功制作了90纳米闪存平台上的芯片,该芯片通过对称位元结构实现了双向运算。通过将权重和填充为所有位行(BLs)的全局值,可以通过数组内的模拟操作有效地执行代价高昂的乘法后处理。bl差分电压输出方案具有两个惟一的不变性。首先,所谓的缩放不变性允许权重矩阵被缩放到每个BL的全范围。其次,移位不变性允许权重被调谐到更大的电导和更好的I-V线性。与分布式填充相结合,还可以通过抑制红外降来降低输入电压损失。上述方案可以显著提高线性度,将相对权重误差降低50%,从MNIST到人脸识别的应用都证实了这一点,这使其成为高级人工智能(AI)和内存计算应用的一个很有前景的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Device Nonideality-Aware Compute-in-Memory Array Architecting: Direct Voltage Sensing, I–V Symmetric Bitcell, and Padding Array
A voltage sensing compute-in-memory (CIM) architecture has been designed to improve the analog computing accuracy, and a chip on 90-nm flash platform has been successfully fabricated, with the bidirectional operation enabled by the symmetric bitcell structure. By padding the weight sum to a global value for all bit lines (BLs), the costly multiplication postprocessing can be efficiently performed with the analog operation inside the array. The BL-differential voltage output scheme has two unique invariances. First, the so-called scaling invariance allows the weight matrix to be scaled to the full range for every BL. Second, the shifting invariance allows the weight to be tuned to a larger conductance with a better I–V linearity. Combined with the distributed padding, input voltage loss can also be reduced by suppressing the IR drop. The above schemes can significantly improve the linearity and reduce the relative weight error by >50%, as confirmed in applications from MNIST to face recognition, making it a promising solution for advanced artificial intelligence (AI) and memory computing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信