神经退行性疾病分类的对比自监督学习。

IF 2.5 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Neuroinformatics Pub Date : 2025-02-17 eCollection Date: 2025-01-01 DOI:10.3389/fninf.2025.1527582
Vadym Gryshchuk, Devesh Singh, Stefan Teipel, Martin Dyrba
{"title":"神经退行性疾病分类的对比自监督学习。","authors":"Vadym Gryshchuk, Devesh Singh, Stefan Teipel, Martin Dyrba","doi":"10.3389/fninf.2025.1527582","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neurodegenerative diseases such as Alzheimer's disease (AD) or frontotemporal lobar degeneration (FTLD) involve specific loss of brain volume, detectable <i>in vivo</i> using T1-weighted MRI scans. Supervised machine learning approaches classifying neurodegenerative diseases require diagnostic-labels for each sample. However, it can be difficult to obtain expert labels for a large amount of data. Self-supervised learning (SSL) offers an alternative for training machine learning models without data-labels.</p><p><strong>Methods: </strong>We investigated if the SSL models can be applied to distinguish between different neurodegenerative disorders in an interpretable manner. Our method comprises a feature extractor and a downstream classification head. A deep convolutional neural network, trained with a contrastive loss, serves as the feature extractor that learns latent representations. The classification head is a single-layer perceptron that is trained to perform diagnostic group separation. We used <i>N</i> = 2,694 T1-weighted MRI scans from four data cohorts: two ADNI datasets, AIBL and FTLDNI, including cognitively normal controls (CN), cases with prodromal and clinical AD, as well as FTLD cases differentiated into its phenotypes.</p><p><strong>Results: </strong>Our results showed that the feature extractor trained in a self-supervised way provides generalizable and robust representations for the downstream classification. For AD vs. CN, our model achieves 82% balanced accuracy on the test subset and 80% on an independent holdout dataset. Similarly, the Behavioral variant of frontotemporal dementia (BV) vs. CN model attains an 88% balanced accuracy on the test subset. The average feature attribution heatmaps obtained by the Integrated Gradient method highlighted hallmark regions, i.e., temporal gray matter atrophy for AD, and insular atrophy for BV.</p><p><strong>Conclusion: </strong>Our models perform comparably to state-of-the-art supervised deep learning approaches. This suggests that the SSL methodology can successfully make use of unannotated neuroimaging datasets as training data while remaining robust and interpretable.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1527582"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrastive self-supervised learning for neurodegenerative disorder classification.\",\"authors\":\"Vadym Gryshchuk, Devesh Singh, Stefan Teipel, Martin Dyrba\",\"doi\":\"10.3389/fninf.2025.1527582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Neurodegenerative diseases such as Alzheimer's disease (AD) or frontotemporal lobar degeneration (FTLD) involve specific loss of brain volume, detectable <i>in vivo</i> using T1-weighted MRI scans. Supervised machine learning approaches classifying neurodegenerative diseases require diagnostic-labels for each sample. However, it can be difficult to obtain expert labels for a large amount of data. Self-supervised learning (SSL) offers an alternative for training machine learning models without data-labels.</p><p><strong>Methods: </strong>We investigated if the SSL models can be applied to distinguish between different neurodegenerative disorders in an interpretable manner. Our method comprises a feature extractor and a downstream classification head. A deep convolutional neural network, trained with a contrastive loss, serves as the feature extractor that learns latent representations. The classification head is a single-layer perceptron that is trained to perform diagnostic group separation. We used <i>N</i> = 2,694 T1-weighted MRI scans from four data cohorts: two ADNI datasets, AIBL and FTLDNI, including cognitively normal controls (CN), cases with prodromal and clinical AD, as well as FTLD cases differentiated into its phenotypes.</p><p><strong>Results: </strong>Our results showed that the feature extractor trained in a self-supervised way provides generalizable and robust representations for the downstream classification. For AD vs. CN, our model achieves 82% balanced accuracy on the test subset and 80% on an independent holdout dataset. Similarly, the Behavioral variant of frontotemporal dementia (BV) vs. CN model attains an 88% balanced accuracy on the test subset. The average feature attribution heatmaps obtained by the Integrated Gradient method highlighted hallmark regions, i.e., temporal gray matter atrophy for AD, and insular atrophy for BV.</p><p><strong>Conclusion: </strong>Our models perform comparably to state-of-the-art supervised deep learning approaches. This suggests that the SSL methodology can successfully make use of unannotated neuroimaging datasets as training data while remaining robust and interpretable.</p>\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"19 \",\"pages\":\"1527582\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2025.1527582\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1527582","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病,如阿尔茨海默病(AD)或额颞叶变性(FTLD)涉及特异性脑容量损失,在体内使用t1加权MRI扫描可检测到。有监督的机器学习方法分类神经退行性疾病需要每个样本的诊断标签。然而,为大量数据获取专家标签是很困难的。自监督学习(SSL)为训练没有数据标签的机器学习模型提供了另一种选择。方法:我们研究了SSL模型是否可以以一种可解释的方式应用于区分不同的神经退行性疾病。我们的方法包括一个特征提取器和一个下游分类头。使用对比损失训练的深度卷积神经网络作为学习潜在表征的特征提取器。分类头是一个单层感知器,它被训练来执行诊断组分离。我们使用了来自四个数据队列的N = 2,694个t1加权MRI扫描:两个ADNI数据集,AIBL和FTLDNI,包括认知正常对照(CN),前驱和临床AD病例,以及分化为其表型的FTLD病例。结果:我们的研究结果表明,以自监督方式训练的特征提取器为下游分类提供了可泛化和鲁棒的表示。对于AD和CN,我们的模型在测试子集上达到82%的平衡精度,在独立的holdout数据集上达到80%。同样,额颞叶痴呆(BV)与CN模型的行为变异在测试子集上达到88%的平衡准确性。综合梯度法得到的平均特征属性热图突出了AD的特征区域,即颞叶灰质萎缩,BV的特征区域为岛状萎缩。结论:我们的模型的表现与最先进的监督深度学习方法相当。这表明SSL方法可以成功地利用未注释的神经成像数据集作为训练数据,同时保持鲁棒性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive self-supervised learning for neurodegenerative disorder classification.

Introduction: Neurodegenerative diseases such as Alzheimer's disease (AD) or frontotemporal lobar degeneration (FTLD) involve specific loss of brain volume, detectable in vivo using T1-weighted MRI scans. Supervised machine learning approaches classifying neurodegenerative diseases require diagnostic-labels for each sample. However, it can be difficult to obtain expert labels for a large amount of data. Self-supervised learning (SSL) offers an alternative for training machine learning models without data-labels.

Methods: We investigated if the SSL models can be applied to distinguish between different neurodegenerative disorders in an interpretable manner. Our method comprises a feature extractor and a downstream classification head. A deep convolutional neural network, trained with a contrastive loss, serves as the feature extractor that learns latent representations. The classification head is a single-layer perceptron that is trained to perform diagnostic group separation. We used N = 2,694 T1-weighted MRI scans from four data cohorts: two ADNI datasets, AIBL and FTLDNI, including cognitively normal controls (CN), cases with prodromal and clinical AD, as well as FTLD cases differentiated into its phenotypes.

Results: Our results showed that the feature extractor trained in a self-supervised way provides generalizable and robust representations for the downstream classification. For AD vs. CN, our model achieves 82% balanced accuracy on the test subset and 80% on an independent holdout dataset. Similarly, the Behavioral variant of frontotemporal dementia (BV) vs. CN model attains an 88% balanced accuracy on the test subset. The average feature attribution heatmaps obtained by the Integrated Gradient method highlighted hallmark regions, i.e., temporal gray matter atrophy for AD, and insular atrophy for BV.

Conclusion: Our models perform comparably to state-of-the-art supervised deep learning approaches. This suggests that the SSL methodology can successfully make use of unannotated neuroimaging datasets as training data while remaining robust and interpretable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroinformatics
Frontiers in Neuroinformatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
4.80
自引率
5.70%
发文量
132
审稿时长
14 weeks
期刊介绍: Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states. Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信