无标准木质素单体定量:采用气相色谱双定量碳检测和质谱法

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Anand Narani, Yu Gao, Jialiang Zhang, Connor A. Beach, Marcus Foston
{"title":"无标准木质素单体定量:采用气相色谱双定量碳检测和质谱法","authors":"Anand Narani, Yu Gao, Jialiang Zhang, Connor A. Beach, Marcus Foston","doi":"10.1021/acs.analchem.4c06128","DOIUrl":null,"url":null,"abstract":"Lignin depolymerization yields a complex mixture of monomeric products, including a wide range of highly oxygenated molecules. Quantifying these lignin monomers using existing gas chromatography (GC) with a flame ionization detector and effective carbon number methods is highly challenging due to the response variability for molecules containing heteroatoms and the inability to quantify unknown monomers. In this work, we demonstrate the potential of a GC equipped with dual detectors, a modified flame ionization detector (FID) for quantitative carbon detection (Polyarc reactor) and a mass spectrometer (GC-QCD/MS) for identifying and quantifying lignin monomers without the use of standards. Lignin depolymerization products were generated from Organosolv poplar lignin and poplar biomass through methods such as hydrogenolysis, solvolysis, and reductive catalytic fractionation. In the GC-QCD/MS, the QCD component converts all organic molecules into methane before quantification via FID, providing nearly uniform response factors for diverse compounds found within the sample, while a flow splitter directs a portion of the sample to the mass spectrometer for simultaneous molecular identification. This setup enables cost-effective, flexible, and streamlined measurements of lignin monomer carbon yields without the need for standards. Additionally, GC-QCD/MS supports the quantification of unidentified compounds within the lignin product mixture.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"2 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lignin Monomer Quantification Without Standards: Using Gas Chromatography with Dual Quantitative Carbon Detection and Mass Spectrometry\",\"authors\":\"Anand Narani, Yu Gao, Jialiang Zhang, Connor A. Beach, Marcus Foston\",\"doi\":\"10.1021/acs.analchem.4c06128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lignin depolymerization yields a complex mixture of monomeric products, including a wide range of highly oxygenated molecules. Quantifying these lignin monomers using existing gas chromatography (GC) with a flame ionization detector and effective carbon number methods is highly challenging due to the response variability for molecules containing heteroatoms and the inability to quantify unknown monomers. In this work, we demonstrate the potential of a GC equipped with dual detectors, a modified flame ionization detector (FID) for quantitative carbon detection (Polyarc reactor) and a mass spectrometer (GC-QCD/MS) for identifying and quantifying lignin monomers without the use of standards. Lignin depolymerization products were generated from Organosolv poplar lignin and poplar biomass through methods such as hydrogenolysis, solvolysis, and reductive catalytic fractionation. In the GC-QCD/MS, the QCD component converts all organic molecules into methane before quantification via FID, providing nearly uniform response factors for diverse compounds found within the sample, while a flow splitter directs a portion of the sample to the mass spectrometer for simultaneous molecular identification. This setup enables cost-effective, flexible, and streamlined measurements of lignin monomer carbon yields without the need for standards. Additionally, GC-QCD/MS supports the quantification of unidentified compounds within the lignin product mixture.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06128\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

木质素解聚产生复杂的单体产物混合物,包括范围广泛的高氧分子。利用现有的气相色谱(GC)与火焰电离检测器和有效的碳数方法来定量这些木质素单体是极具挑战性的,因为对含有杂原子的分子的响应变化和无法定量未知单体。在这项工作中,我们展示了配备双检测器的气相色谱,用于定量碳检测的改进火焰电离检测器(FID) (Polyarc反应器)和用于鉴定和定量木质素单体的质谱仪(GC- qcd /MS)的潜力,而无需使用标准品。通过氢解、溶剂解和还原催化分馏等方法,将有机溶剂杨木木质素和杨木生物质分解为木质素解聚产物。在GC-QCD/MS中,QCD组件将所有有机分子转化为甲烷,然后通过FID进行定量,为样品中发现的不同化合物提供几乎一致的响应因子,而流动分离器将部分样品引导到质谱仪进行同时分子鉴定。这种设置使成本效益高,灵活,精简的木质素单体碳产量的测量,而不需要标准。此外,GC-QCD/MS支持木质素产物混合物中未知化合物的定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lignin Monomer Quantification Without Standards: Using Gas Chromatography with Dual Quantitative Carbon Detection and Mass Spectrometry

Lignin Monomer Quantification Without Standards: Using Gas Chromatography with Dual Quantitative Carbon Detection and Mass Spectrometry
Lignin depolymerization yields a complex mixture of monomeric products, including a wide range of highly oxygenated molecules. Quantifying these lignin monomers using existing gas chromatography (GC) with a flame ionization detector and effective carbon number methods is highly challenging due to the response variability for molecules containing heteroatoms and the inability to quantify unknown monomers. In this work, we demonstrate the potential of a GC equipped with dual detectors, a modified flame ionization detector (FID) for quantitative carbon detection (Polyarc reactor) and a mass spectrometer (GC-QCD/MS) for identifying and quantifying lignin monomers without the use of standards. Lignin depolymerization products were generated from Organosolv poplar lignin and poplar biomass through methods such as hydrogenolysis, solvolysis, and reductive catalytic fractionation. In the GC-QCD/MS, the QCD component converts all organic molecules into methane before quantification via FID, providing nearly uniform response factors for diverse compounds found within the sample, while a flow splitter directs a portion of the sample to the mass spectrometer for simultaneous molecular identification. This setup enables cost-effective, flexible, and streamlined measurements of lignin monomer carbon yields without the need for standards. Additionally, GC-QCD/MS supports the quantification of unidentified compounds within the lignin product mixture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信