增强卷积神经网络的几何建模:极限可变形卷积

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Wang, Yuanze Meng, Han Li, Guiyong Chang, Shun Li, Chenghong Zhang
{"title":"增强卷积神经网络的几何建模:极限可变形卷积","authors":"Wei Wang, Yuanze Meng, Han Li, Guiyong Chang, Shun Li, Chenghong Zhang","doi":"10.1007/s40747-025-01799-8","DOIUrl":null,"url":null,"abstract":"<p>Convolutional neural networks (CNNs) are constrained in their capacity to model geometric transformations due to their fixed geometric structure. To overcome this problem, researchers introduce deformable convolution, which allows the convolution kernel to be deformable on the feature map. However, deformable convolution may introduce irrelevant contextual information during the learning process and thus affect the model performance. DCNv2 introduces a modulation mechanism to control the diffusion of the sampling points to control the degree of contribution of offsets through weights, but we find that such problems still exist in practical use. Therefore, we propose a new limit deformable convolution to address this problem, which enhances the model ability by adding adaptive limiting units to constrain the offsets and adjusts the weight constraints on the offsets to enhance the image-focusing ability. In the subsequent work, we perform lightweight work on the limit deformable convolution and design three kinds of LDBottleneck to adapt to different scenarios. The limit deformable network, equipped with the optimal LDBottleneck, demonstrated an improvement in mAP75 of 1.4% compared to DCNv1 and 1.1% compared to DCNv2 on the VOC2012+2007 dataset. Furthermore, on the CoCo2017 dataset, different backbones equipped with our limit deformable module achieved satisfactory results. The source code for this work is publicly available at https://github.com/1977245719/LDCN.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"9 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing geometric modeling in convolutional neural networks: limit deformable convolution\",\"authors\":\"Wei Wang, Yuanze Meng, Han Li, Guiyong Chang, Shun Li, Chenghong Zhang\",\"doi\":\"10.1007/s40747-025-01799-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convolutional neural networks (CNNs) are constrained in their capacity to model geometric transformations due to their fixed geometric structure. To overcome this problem, researchers introduce deformable convolution, which allows the convolution kernel to be deformable on the feature map. However, deformable convolution may introduce irrelevant contextual information during the learning process and thus affect the model performance. DCNv2 introduces a modulation mechanism to control the diffusion of the sampling points to control the degree of contribution of offsets through weights, but we find that such problems still exist in practical use. Therefore, we propose a new limit deformable convolution to address this problem, which enhances the model ability by adding adaptive limiting units to constrain the offsets and adjusts the weight constraints on the offsets to enhance the image-focusing ability. In the subsequent work, we perform lightweight work on the limit deformable convolution and design three kinds of LDBottleneck to adapt to different scenarios. The limit deformable network, equipped with the optimal LDBottleneck, demonstrated an improvement in mAP75 of 1.4% compared to DCNv1 and 1.1% compared to DCNv2 on the VOC2012+2007 dataset. Furthermore, on the CoCo2017 dataset, different backbones equipped with our limit deformable module achieved satisfactory results. The source code for this work is publicly available at https://github.com/1977245719/LDCN.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-025-01799-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01799-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing geometric modeling in convolutional neural networks: limit deformable convolution

Convolutional neural networks (CNNs) are constrained in their capacity to model geometric transformations due to their fixed geometric structure. To overcome this problem, researchers introduce deformable convolution, which allows the convolution kernel to be deformable on the feature map. However, deformable convolution may introduce irrelevant contextual information during the learning process and thus affect the model performance. DCNv2 introduces a modulation mechanism to control the diffusion of the sampling points to control the degree of contribution of offsets through weights, but we find that such problems still exist in practical use. Therefore, we propose a new limit deformable convolution to address this problem, which enhances the model ability by adding adaptive limiting units to constrain the offsets and adjusts the weight constraints on the offsets to enhance the image-focusing ability. In the subsequent work, we perform lightweight work on the limit deformable convolution and design three kinds of LDBottleneck to adapt to different scenarios. The limit deformable network, equipped with the optimal LDBottleneck, demonstrated an improvement in mAP75 of 1.4% compared to DCNv1 and 1.1% compared to DCNv2 on the VOC2012+2007 dataset. Furthermore, on the CoCo2017 dataset, different backbones equipped with our limit deformable module achieved satisfactory results. The source code for this work is publicly available at https://github.com/1977245719/LDCN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信