单原子掺杂Cs2AuIAuIIIX6 (X = Cl, Br, I)的结构跃迁和间接带隙调谐研究

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rongjian Sa , Kaixin Cao , Huiling Zhang , Lanhua Wu , Xiaowei Dai , Diwen Liu
{"title":"单原子掺杂Cs2AuIAuIIIX6 (X = Cl, Br, I)的结构跃迁和间接带隙调谐研究","authors":"Rongjian Sa ,&nbsp;Kaixin Cao ,&nbsp;Huiling Zhang ,&nbsp;Lanhua Wu ,&nbsp;Xiaowei Dai ,&nbsp;Diwen Liu","doi":"10.1016/j.mssp.2025.109447","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite materials have captured research attention in recent years because of their potential use in photovoltaic (PV) applications. Herein, we have performed an examination of structural transition and indirect-direct band gap tuning of mixed-valence halide perovskites Cs<sub>2</sub>Au<sup>I</sup>Au<sup>III</sup>X<sub>6</sub> (X = Cl, Br, I) via single-atom doping to determine their suitability for PV applications. The tetragonal-to-tetragonal phase transition is demonstrated from Cs<sub>2</sub>Au<sup>I</sup>Au<sup>III</sup>X<sub>6</sub> to Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>X<sub>6</sub>, and an indirect-direct band gap tuning is further observed for Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>X<sub>6</sub> (X = Cl and Br). Three doped perovskites are revealed to be dynamically and mechanically stable. From an analysis of mechanical properties, they are ductile materials. The appropriate band gaps for Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>Cl<sub>6</sub>, Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>Br<sub>6</sub>, and Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>I<sub>6</sub> are predicted to be 1.276 eV, 1.057 eV and 1.078 eV, respectively. Further analysis of the reflectance and energy loss spectra shows relatively low peaks in the visible region. Meanwhile, the strong optical anisotropy and high visible absorption are illustrated. Overall, our study unveils that Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>X<sub>6</sub> (X = Cl, Br, I) halide perovskites are highly expected to be viable alternatives for efficient solar energy conversion.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"192 ","pages":"Article 109447"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of structural transition and indirect-direct bandgap tuning of Cs2AuIAuIIIX6 (X = Cl, Br, I) via single-atom doping\",\"authors\":\"Rongjian Sa ,&nbsp;Kaixin Cao ,&nbsp;Huiling Zhang ,&nbsp;Lanhua Wu ,&nbsp;Xiaowei Dai ,&nbsp;Diwen Liu\",\"doi\":\"10.1016/j.mssp.2025.109447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite materials have captured research attention in recent years because of their potential use in photovoltaic (PV) applications. Herein, we have performed an examination of structural transition and indirect-direct band gap tuning of mixed-valence halide perovskites Cs<sub>2</sub>Au<sup>I</sup>Au<sup>III</sup>X<sub>6</sub> (X = Cl, Br, I) via single-atom doping to determine their suitability for PV applications. The tetragonal-to-tetragonal phase transition is demonstrated from Cs<sub>2</sub>Au<sup>I</sup>Au<sup>III</sup>X<sub>6</sub> to Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>X<sub>6</sub>, and an indirect-direct band gap tuning is further observed for Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>X<sub>6</sub> (X = Cl and Br). Three doped perovskites are revealed to be dynamically and mechanically stable. From an analysis of mechanical properties, they are ductile materials. The appropriate band gaps for Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>Cl<sub>6</sub>, Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>Br<sub>6</sub>, and Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>I<sub>6</sub> are predicted to be 1.276 eV, 1.057 eV and 1.078 eV, respectively. Further analysis of the reflectance and energy loss spectra shows relatively low peaks in the visible region. Meanwhile, the strong optical anisotropy and high visible absorption are illustrated. Overall, our study unveils that Cs<sub>2</sub>Ag<sup>I</sup><sub>0.5</sub>Au<sup>I</sup><sub>0.5</sub>Au<sup>III</sup>X<sub>6</sub> (X = Cl, Br, I) halide perovskites are highly expected to be viable alternatives for efficient solar energy conversion.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"192 \",\"pages\":\"Article 109447\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125001842\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125001842","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,钙钛矿材料因其在光伏(PV)领域的潜在应用而备受关注。在此,我们通过单原子掺杂对混合价卤化物钙钛矿Cs2AuIAuIIIX6 (X = Cl, Br, I)的结构转变和间接带隙调谐进行了研究,以确定其在光伏应用中的适用性。从Cs2AuIAuIIIX6到Cs2AgI0.5AuI0.5AuIIIX6的相变为四边形到四边形,并且在Cs2AgI0.5AuI0.5AuIIIX6 (X = Cl和Br)中进一步观察到间接直接带隙调谐。三种掺杂的钙钛矿具有动态和机械稳定性。从力学性能分析来看,它们是延展性材料。预测Cs2AgI0.5AuI0.5AuIIICl6、Cs2AgI0.5AuI0.5AuIIIBr6和Cs2AgI0.5AuI0.5AuIIII6的合适带隙分别为1.276 eV、1.057 eV和1.078 eV。进一步的反射率和能量损失光谱分析表明,在可见光区相对较低的峰。同时,具有较强的光学各向异性和较高的可见光吸收。总的来说,我们的研究表明,Cs2AgI0.5AuI0.5AuIIIX6 (X = Cl, Br, I)卤化物钙钛矿有望成为高效太阳能转换的可行替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of structural transition and indirect-direct bandgap tuning of Cs2AuIAuIIIX6 (X = Cl, Br, I) via single-atom doping
Perovskite materials have captured research attention in recent years because of their potential use in photovoltaic (PV) applications. Herein, we have performed an examination of structural transition and indirect-direct band gap tuning of mixed-valence halide perovskites Cs2AuIAuIIIX6 (X = Cl, Br, I) via single-atom doping to determine their suitability for PV applications. The tetragonal-to-tetragonal phase transition is demonstrated from Cs2AuIAuIIIX6 to Cs2AgI0.5AuI0.5AuIIIX6, and an indirect-direct band gap tuning is further observed for Cs2AgI0.5AuI0.5AuIIIX6 (X = Cl and Br). Three doped perovskites are revealed to be dynamically and mechanically stable. From an analysis of mechanical properties, they are ductile materials. The appropriate band gaps for Cs2AgI0.5AuI0.5AuIIICl6, Cs2AgI0.5AuI0.5AuIIIBr6, and Cs2AgI0.5AuI0.5AuIIII6 are predicted to be 1.276 eV, 1.057 eV and 1.078 eV, respectively. Further analysis of the reflectance and energy loss spectra shows relatively low peaks in the visible region. Meanwhile, the strong optical anisotropy and high visible absorption are illustrated. Overall, our study unveils that Cs2AgI0.5AuI0.5AuIIIX6 (X = Cl, Br, I) halide perovskites are highly expected to be viable alternatives for efficient solar energy conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信