Zhejun Yang, Tongtong Tian*, Jilie Kong* and Hui Chen*,
{"title":"ChatExosome:基于外泌体光谱深度学习的人工智能(AI)代理用于肝细胞癌(HCC)诊断","authors":"Zhejun Yang, Tongtong Tian*, Jilie Kong* and Hui Chen*, ","doi":"10.1021/acs.analchem.4c0667710.1021/acs.analchem.4c06677","DOIUrl":null,"url":null,"abstract":"<p >Large language models (LLMs) hold significant promise in the field of medical diagnosis. There are still many challenges in the direct diagnosis of hepatocellular carcinoma (HCC). α-Fetoprotein (AFP) is a commonly used tumor marker for liver cancer. However, relying on AFP can result in missed diagnoses of HCC. We developed an artificial intelligence (AI) agent centered on LLMs, named ChatExosome, which created an interactive and convenient system for clinical spectroscopic analysis and diagnosis. ChatExosome consists of two main components: the first is the deep learning of the Raman fingerprinting of exosomes derived from HCC. Based on a patch-based 1D self-attention mechanism and downsampling, the feature fusion transformer (FFT) was designed to process the Raman spectra of exosomes. It achieved accuracies of 95.8% for cell-derived exosomes and 94.1% for 165 clinical samples, respectively. The second component is the interactive chat agent based on LLM. The retrieval-augmented generation (RAG) method was utilized to enhance the knowledge related to exosomes. Overall, LLM serves as the core of this interactive system, which is capable of identifying users’ intentions and invoking the appropriate plugins to process the Raman data of exosomes. This is the first AI agent focusing on exosome spectroscopy and diagnosis, enhancing the interpretability of classification results, enabling physicians to leverage cutting-edge medical research and artificial intelligence techniques to optimize medical decision-making processes, and it shows great potential in intelligent diagnosis.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 8","pages":"4643–4652 4643–4652"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChatExosome: An Artificial Intelligence (AI) Agent Based on Deep Learning of Exosomes Spectroscopy for Hepatocellular Carcinoma (HCC) Diagnosis\",\"authors\":\"Zhejun Yang, Tongtong Tian*, Jilie Kong* and Hui Chen*, \",\"doi\":\"10.1021/acs.analchem.4c0667710.1021/acs.analchem.4c06677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Large language models (LLMs) hold significant promise in the field of medical diagnosis. There are still many challenges in the direct diagnosis of hepatocellular carcinoma (HCC). α-Fetoprotein (AFP) is a commonly used tumor marker for liver cancer. However, relying on AFP can result in missed diagnoses of HCC. We developed an artificial intelligence (AI) agent centered on LLMs, named ChatExosome, which created an interactive and convenient system for clinical spectroscopic analysis and diagnosis. ChatExosome consists of two main components: the first is the deep learning of the Raman fingerprinting of exosomes derived from HCC. Based on a patch-based 1D self-attention mechanism and downsampling, the feature fusion transformer (FFT) was designed to process the Raman spectra of exosomes. It achieved accuracies of 95.8% for cell-derived exosomes and 94.1% for 165 clinical samples, respectively. The second component is the interactive chat agent based on LLM. The retrieval-augmented generation (RAG) method was utilized to enhance the knowledge related to exosomes. Overall, LLM serves as the core of this interactive system, which is capable of identifying users’ intentions and invoking the appropriate plugins to process the Raman data of exosomes. This is the first AI agent focusing on exosome spectroscopy and diagnosis, enhancing the interpretability of classification results, enabling physicians to leverage cutting-edge medical research and artificial intelligence techniques to optimize medical decision-making processes, and it shows great potential in intelligent diagnosis.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 8\",\"pages\":\"4643–4652 4643–4652\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c06677\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c06677","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
ChatExosome: An Artificial Intelligence (AI) Agent Based on Deep Learning of Exosomes Spectroscopy for Hepatocellular Carcinoma (HCC) Diagnosis
Large language models (LLMs) hold significant promise in the field of medical diagnosis. There are still many challenges in the direct diagnosis of hepatocellular carcinoma (HCC). α-Fetoprotein (AFP) is a commonly used tumor marker for liver cancer. However, relying on AFP can result in missed diagnoses of HCC. We developed an artificial intelligence (AI) agent centered on LLMs, named ChatExosome, which created an interactive and convenient system for clinical spectroscopic analysis and diagnosis. ChatExosome consists of two main components: the first is the deep learning of the Raman fingerprinting of exosomes derived from HCC. Based on a patch-based 1D self-attention mechanism and downsampling, the feature fusion transformer (FFT) was designed to process the Raman spectra of exosomes. It achieved accuracies of 95.8% for cell-derived exosomes and 94.1% for 165 clinical samples, respectively. The second component is the interactive chat agent based on LLM. The retrieval-augmented generation (RAG) method was utilized to enhance the knowledge related to exosomes. Overall, LLM serves as the core of this interactive system, which is capable of identifying users’ intentions and invoking the appropriate plugins to process the Raman data of exosomes. This is the first AI agent focusing on exosome spectroscopy and diagnosis, enhancing the interpretability of classification results, enabling physicians to leverage cutting-edge medical research and artificial intelligence techniques to optimize medical decision-making processes, and it shows great potential in intelligent diagnosis.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.