利用化学计量学和机器学习的x射线荧光元素谱分析菲律宾罗布斯塔咖啡(C.Canephora)的地理起源分化

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Krizzia Rae S. Gines , Emmanuel V. Garcia , Rosario S. Sagum , Angel T. Bautista VII
{"title":"利用化学计量学和机器学习的x射线荧光元素谱分析菲律宾罗布斯塔咖啡(C.Canephora)的地理起源分化","authors":"Krizzia Rae S. Gines ,&nbsp;Emmanuel V. Garcia ,&nbsp;Rosario S. Sagum ,&nbsp;Angel T. Bautista VII","doi":"10.1016/j.foodchem.2025.143676","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for authenticity and traceability in high-value crops underscores the need for reliable methods to verify the geographical origin of single-origin coffee and prevent fraud. This study explores a rapid and cost-effective approach utilizing Energy-Dispersive X-ray Fluorescence (EDXRF) elemental profiling combined with chemometrics and machine learning techniques. The concentrations of ten elements (K, P, Ca, S, Cl, Fe, Cu, Mn, Sr, Zn) were analyzed in 43 green Robusta coffee samples from four Philippine provinces to assess origin differentiation. Principal Component Analysis (PCA) revealed distinct clustering patterns, while Linear Discriminant Analysis (LDA) achieved 79 % classification accuracy. Random Forest (RF) improved accuracy to 84 %, highlighting its potential for geographical classification. This study serves as a proof of concept for employing XRF-based elemental profiling to differentiate Robusta coffee by origin, providing baseline data to support the development of authenticity and traceability systems within the Philippine coffee industry.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"478 ","pages":"Article 143676"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geographical origin differentiation of Philippine Robusta coffee (C. canephora) using X-ray fluorescence-based elemental profiling with chemometrics and machine learning\",\"authors\":\"Krizzia Rae S. Gines ,&nbsp;Emmanuel V. Garcia ,&nbsp;Rosario S. Sagum ,&nbsp;Angel T. Bautista VII\",\"doi\":\"10.1016/j.foodchem.2025.143676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing demand for authenticity and traceability in high-value crops underscores the need for reliable methods to verify the geographical origin of single-origin coffee and prevent fraud. This study explores a rapid and cost-effective approach utilizing Energy-Dispersive X-ray Fluorescence (EDXRF) elemental profiling combined with chemometrics and machine learning techniques. The concentrations of ten elements (K, P, Ca, S, Cl, Fe, Cu, Mn, Sr, Zn) were analyzed in 43 green Robusta coffee samples from four Philippine provinces to assess origin differentiation. Principal Component Analysis (PCA) revealed distinct clustering patterns, while Linear Discriminant Analysis (LDA) achieved 79 % classification accuracy. Random Forest (RF) improved accuracy to 84 %, highlighting its potential for geographical classification. This study serves as a proof of concept for employing XRF-based elemental profiling to differentiate Robusta coffee by origin, providing baseline data to support the development of authenticity and traceability systems within the Philippine coffee industry.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"478 \",\"pages\":\"Article 143676\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625009276\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625009276","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

人们对高价值作物的真实性和可追溯性的要求越来越高,这突出表明需要可靠的方法来验证单一原产地咖啡的地理原产地并防止欺诈行为。本研究利用能量色散 X 射线荧光(EDXRF)元素分析与化学计量学和机器学习技术相结合,探索了一种快速、经济的方法。研究分析了菲律宾四个省的 43 个绿色罗布斯塔咖啡样品中十种元素(K、P、Ca、S、Cl、Fe、Cu、Mn、Sr、Zn)的浓度,以评估原产地区分。主成分分析(PCA)揭示了独特的聚类模式,而线性判别分析(LDA)的分类准确率达到 79%。随机森林(RF)将准确率提高到 84%,凸显了其在地理分类方面的潜力。这项研究证明了采用基于 XRF 的元素分析来区分罗布斯塔咖啡原产地的概念,为菲律宾咖啡行业开发真实性和可追溯性系统提供了基础数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geographical origin differentiation of Philippine Robusta coffee (C. canephora) using X-ray fluorescence-based elemental profiling with chemometrics and machine learning
The increasing demand for authenticity and traceability in high-value crops underscores the need for reliable methods to verify the geographical origin of single-origin coffee and prevent fraud. This study explores a rapid and cost-effective approach utilizing Energy-Dispersive X-ray Fluorescence (EDXRF) elemental profiling combined with chemometrics and machine learning techniques. The concentrations of ten elements (K, P, Ca, S, Cl, Fe, Cu, Mn, Sr, Zn) were analyzed in 43 green Robusta coffee samples from four Philippine provinces to assess origin differentiation. Principal Component Analysis (PCA) revealed distinct clustering patterns, while Linear Discriminant Analysis (LDA) achieved 79 % classification accuracy. Random Forest (RF) improved accuracy to 84 %, highlighting its potential for geographical classification. This study serves as a proof of concept for employing XRF-based elemental profiling to differentiate Robusta coffee by origin, providing baseline data to support the development of authenticity and traceability systems within the Philippine coffee industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信