自主动力踝关节外骨骼改善中风后足部间隙和膝关节超伸:一个案例研究

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Kai Pruyn;Rosemarie Murray;Lukas Gabert;Tommaso Lenzi
{"title":"自主动力踝关节外骨骼改善中风后足部间隙和膝关节超伸:一个案例研究","authors":"Kai Pruyn;Rosemarie Murray;Lukas Gabert;Tommaso Lenzi","doi":"10.1109/TMRB.2024.3503893","DOIUrl":null,"url":null,"abstract":"Hemiparetic gait is often characterized by ankle weakness, resulting in decreased propulsion and clearance, as well as knee hyperextension. These gait deviations reduce speed and efficiency while increasing the risk of falls and osteoarthritis. Powered ankle exoskeletons have the potential to address these issues. However, only a handful of studies have investigated their effects on hemiparetic gait. The results are often inconsistent, and the biomechanical analysis rarely includes the knee or hip joint or a direct clearance measure. In this case study, we assess the ankle, knee, and hip biomechanics with and without a new autonomous powered ankle exoskeleton across different speeds and inclines. Exoskeleton assistance resulted in more normative kinematics at the subject’s self-selected walking speed. The paretic ankle angle at heel strike increased from 10° plantarflexed without the exoskeleton to 0.5° dorsiflexed with the exoskeleton, and the peak plantarflexion angle during swing decreased from 28° without the exoskeleton to 12° with the exoskeleton. Furthermore, stance knee flexion increased from 7° without the exoskeleton to 20° with the exoskeleton. Finally, foot clearance increased with the exoskeleton for all conditions between 3.1 cm and 5.4 cm. This case study highlights new mechanisms for powered ankle exoskeletons to improve hemiparetic gait.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"51-58"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759770","citationCount":"0","resultStr":"{\"title\":\"Autonomous Powered Ankle Exoskeleton Improves Foot Clearance and Knee Hyperextension After Stroke: A Case Study\",\"authors\":\"Kai Pruyn;Rosemarie Murray;Lukas Gabert;Tommaso Lenzi\",\"doi\":\"10.1109/TMRB.2024.3503893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hemiparetic gait is often characterized by ankle weakness, resulting in decreased propulsion and clearance, as well as knee hyperextension. These gait deviations reduce speed and efficiency while increasing the risk of falls and osteoarthritis. Powered ankle exoskeletons have the potential to address these issues. However, only a handful of studies have investigated their effects on hemiparetic gait. The results are often inconsistent, and the biomechanical analysis rarely includes the knee or hip joint or a direct clearance measure. In this case study, we assess the ankle, knee, and hip biomechanics with and without a new autonomous powered ankle exoskeleton across different speeds and inclines. Exoskeleton assistance resulted in more normative kinematics at the subject’s self-selected walking speed. The paretic ankle angle at heel strike increased from 10° plantarflexed without the exoskeleton to 0.5° dorsiflexed with the exoskeleton, and the peak plantarflexion angle during swing decreased from 28° without the exoskeleton to 12° with the exoskeleton. Furthermore, stance knee flexion increased from 7° without the exoskeleton to 20° with the exoskeleton. Finally, foot clearance increased with the exoskeleton for all conditions between 3.1 cm and 5.4 cm. This case study highlights new mechanisms for powered ankle exoskeletons to improve hemiparetic gait.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"51-58\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759770\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10759770/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

偏瘫步态通常以踝关节无力为特征,导致推进力和间隙减少,以及膝关节过伸。这些步态偏差降低了速度和效率,同时增加了跌倒和骨关节炎的风险。动力脚踝外骨骼有可能解决这些问题。然而,只有少数研究调查了它们对偏瘫步态的影响。结果往往不一致,生物力学分析很少包括膝关节或髋关节或直接间隙测量。在这个案例研究中,我们评估了有和没有新的自主动力脚踝外骨骼在不同速度和倾斜度下的脚踝、膝盖和髋关节的生物力学。外骨骼辅助使受试者在自行选择的行走速度下具有更规范的运动学。在无外骨骼的情况下,足跟着地时的麻痹性踝关节角度从10°跖屈增加到0.5°背屈,在无外骨骼的情况下,摆动时的跖屈峰值角度从28°下降到12°。此外,站立膝关节屈曲度从没有外骨骼的7°增加到有外骨骼的20°。最后,在所有条件下,足部间隙随外骨骼的增加而增加,在3.1 cm到5.4 cm之间。本案例研究强调了动力踝关节外骨骼改善偏瘫步态的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Powered Ankle Exoskeleton Improves Foot Clearance and Knee Hyperextension After Stroke: A Case Study
Hemiparetic gait is often characterized by ankle weakness, resulting in decreased propulsion and clearance, as well as knee hyperextension. These gait deviations reduce speed and efficiency while increasing the risk of falls and osteoarthritis. Powered ankle exoskeletons have the potential to address these issues. However, only a handful of studies have investigated their effects on hemiparetic gait. The results are often inconsistent, and the biomechanical analysis rarely includes the knee or hip joint or a direct clearance measure. In this case study, we assess the ankle, knee, and hip biomechanics with and without a new autonomous powered ankle exoskeleton across different speeds and inclines. Exoskeleton assistance resulted in more normative kinematics at the subject’s self-selected walking speed. The paretic ankle angle at heel strike increased from 10° plantarflexed without the exoskeleton to 0.5° dorsiflexed with the exoskeleton, and the peak plantarflexion angle during swing decreased from 28° without the exoskeleton to 12° with the exoskeleton. Furthermore, stance knee flexion increased from 7° without the exoskeleton to 20° with the exoskeleton. Finally, foot clearance increased with the exoskeleton for all conditions between 3.1 cm and 5.4 cm. This case study highlights new mechanisms for powered ankle exoskeletons to improve hemiparetic gait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信