利用能量回收优化可变刚度矫形器的机械结构,减轻足下垂现象

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Emily A. Bywater;Nikko Van Crey;Elliott J. Rouse
{"title":"利用能量回收优化可变刚度矫形器的机械结构,减轻足下垂现象","authors":"Emily A. Bywater;Nikko Van Crey;Elliott J. Rouse","doi":"10.1109/TMRB.2024.3505304","DOIUrl":null,"url":null,"abstract":"In ankle-foot orthosis development, it is challenging to both specify the appropriate ankle mechanics and design systems that can physically render them. Recently, a new ankle-foot orthosis-the Variable Stiffness Orthosis (VSO)–was introduced to allow customization of the shape of the joint’s torque-angle relationship via a cam-based transmission. A module in the VSO permits switching between two coupled torque-angle relationships at desired kinematic transitions. This module decouples energy storage and return (DESR), enabling new functionality, including varying the ankle’s equilibrium position and exchanging energy between gait phases. However, the torque-angle relationships are defined by many parameters and subject to substantial constraints. We developed an optimization framework to design two versions of the DESR module to address foot drop. The angle module was designed to maximize swing ankle angle, and the energy module was designed to maximize energy recycled from early stance phase to augment push off. We validated the results of the optimization with brute-force searching and empirically tested the DESR mechanics in a rotary dynamometer. The angle module facilitated swing angles of up to 0.63° dorsiflexion, while simultaneously permitting a plantarflexed standing angle, and the energy module recycled up to 1.84 J.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"130-140"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Mechanics of a Variable-Stiffness Orthosis With Energy Recycling to Mitigate Foot Drop\",\"authors\":\"Emily A. Bywater;Nikko Van Crey;Elliott J. Rouse\",\"doi\":\"10.1109/TMRB.2024.3505304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ankle-foot orthosis development, it is challenging to both specify the appropriate ankle mechanics and design systems that can physically render them. Recently, a new ankle-foot orthosis-the Variable Stiffness Orthosis (VSO)–was introduced to allow customization of the shape of the joint’s torque-angle relationship via a cam-based transmission. A module in the VSO permits switching between two coupled torque-angle relationships at desired kinematic transitions. This module decouples energy storage and return (DESR), enabling new functionality, including varying the ankle’s equilibrium position and exchanging energy between gait phases. However, the torque-angle relationships are defined by many parameters and subject to substantial constraints. We developed an optimization framework to design two versions of the DESR module to address foot drop. The angle module was designed to maximize swing ankle angle, and the energy module was designed to maximize energy recycled from early stance phase to augment push off. We validated the results of the optimization with brute-force searching and empirically tested the DESR mechanics in a rotary dynamometer. The angle module facilitated swing angles of up to 0.63° dorsiflexion, while simultaneously permitting a plantarflexed standing angle, and the energy module recycled up to 1.84 J.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"130-140\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10766907/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10766907/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在踝关节-足部矫形器的开发中,既要明确适当的踝关节力学,又要设计能够物理呈现它们的系统,这是一项挑战。最近,一种新的踝足矫形器——可变刚度矫形器(VSO)被引入,它允许通过基于凸轮的传动来定制关节的扭矩-角度关系形状。VSO中的一个模块允许在所需的运动学转换时在两个耦合的扭矩-角度关系之间切换。该模块解耦了能量存储和返回(DESR),实现了新的功能,包括改变脚踝的平衡位置和在步态阶段之间交换能量。然而,扭矩-角度关系是由许多参数定义的,并且受到很大的约束。我们开发了一个优化框架来设计两个版本的DESR模块来解决脚下降问题。角度模块的设计是为了最大化摆动踝关节的角度,能量模块的设计是为了最大化从站立早期回收的能量,以增加推离。通过暴力搜索验证了优化结果,并在旋转测功机上对DESR力学进行了实证测试。角度模块可实现高达0.63°的背屈摆动角度,同时允许植物弯曲立角,能量模块可回收高达1.84 J。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the Mechanics of a Variable-Stiffness Orthosis With Energy Recycling to Mitigate Foot Drop
In ankle-foot orthosis development, it is challenging to both specify the appropriate ankle mechanics and design systems that can physically render them. Recently, a new ankle-foot orthosis-the Variable Stiffness Orthosis (VSO)–was introduced to allow customization of the shape of the joint’s torque-angle relationship via a cam-based transmission. A module in the VSO permits switching between two coupled torque-angle relationships at desired kinematic transitions. This module decouples energy storage and return (DESR), enabling new functionality, including varying the ankle’s equilibrium position and exchanging energy between gait phases. However, the torque-angle relationships are defined by many parameters and subject to substantial constraints. We developed an optimization framework to design two versions of the DESR module to address foot drop. The angle module was designed to maximize swing ankle angle, and the energy module was designed to maximize energy recycled from early stance phase to augment push off. We validated the results of the optimization with brute-force searching and empirically tested the DESR mechanics in a rotary dynamometer. The angle module facilitated swing angles of up to 0.63° dorsiflexion, while simultaneously permitting a plantarflexed standing angle, and the energy module recycled up to 1.84 J.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信