细胞启发的超变形磁性微型机器人在限制性环境中的渗透

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Eugenia De Remigis;Fehmi M. Dikbaş;Michele Ibrahimi;Francesco Bianciardi;Elisa L. Petrocelli;Elisa Roberti;Veronica Iacovacci;Stefano Palagi
{"title":"细胞启发的超变形磁性微型机器人在限制性环境中的渗透","authors":"Eugenia De Remigis;Fehmi M. Dikbaş;Michele Ibrahimi;Francesco Bianciardi;Elisa L. Petrocelli;Elisa Roberti;Veronica Iacovacci;Stefano Palagi","doi":"10.1109/TMRB.2024.3503898","DOIUrl":null,"url":null,"abstract":"Microscale robotics represents a promising future for minimally invasive medicine. However, one of the biggest challenges of microrobots moving through the human body is represented by the complex 3D structure of biological lumina and tissues, which obstructs the navigation of micron-sized devices. Here, we fabricate ultra-deformable magnetic microrobots, consisting of ferrofluid-loaded lipid vesicles, and we magnetically pull them through chambers that exert upon them a gradually more forceful confinement. We thus analyze their capability to face interstices comparable to or smaller than their characteristic size and their consequent behavior in terms of stability, velocity, and deformation. The results show that the inherent compliance of these vesicle-based magnetic microrobots allows them to infiltrate successfully in interstices slightly smaller than their size. Further enhancement of their compliance and the development of specific control strategies may lead to microrobots able to move through interstices and traverse complex biological environments.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"123-129"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10768195","citationCount":"0","resultStr":"{\"title\":\"Infiltration of Cell-Inspired Ultra-Deformable Magnetic Microrobots in Restrictive Environments\",\"authors\":\"Eugenia De Remigis;Fehmi M. Dikbaş;Michele Ibrahimi;Francesco Bianciardi;Elisa L. Petrocelli;Elisa Roberti;Veronica Iacovacci;Stefano Palagi\",\"doi\":\"10.1109/TMRB.2024.3503898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscale robotics represents a promising future for minimally invasive medicine. However, one of the biggest challenges of microrobots moving through the human body is represented by the complex 3D structure of biological lumina and tissues, which obstructs the navigation of micron-sized devices. Here, we fabricate ultra-deformable magnetic microrobots, consisting of ferrofluid-loaded lipid vesicles, and we magnetically pull them through chambers that exert upon them a gradually more forceful confinement. We thus analyze their capability to face interstices comparable to or smaller than their characteristic size and their consequent behavior in terms of stability, velocity, and deformation. The results show that the inherent compliance of these vesicle-based magnetic microrobots allows them to infiltrate successfully in interstices slightly smaller than their size. Further enhancement of their compliance and the development of specific control strategies may lead to microrobots able to move through interstices and traverse complex biological environments.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"123-129\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10768195\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10768195/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10768195/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infiltration of Cell-Inspired Ultra-Deformable Magnetic Microrobots in Restrictive Environments
Microscale robotics represents a promising future for minimally invasive medicine. However, one of the biggest challenges of microrobots moving through the human body is represented by the complex 3D structure of biological lumina and tissues, which obstructs the navigation of micron-sized devices. Here, we fabricate ultra-deformable magnetic microrobots, consisting of ferrofluid-loaded lipid vesicles, and we magnetically pull them through chambers that exert upon them a gradually more forceful confinement. We thus analyze their capability to face interstices comparable to or smaller than their characteristic size and their consequent behavior in terms of stability, velocity, and deformation. The results show that the inherent compliance of these vesicle-based magnetic microrobots allows them to infiltrate successfully in interstices slightly smaller than their size. Further enhancement of their compliance and the development of specific control strategies may lead to microrobots able to move through interstices and traverse complex biological environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信