MGNN:通用分子势矩图神经网络

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jian Chang, Shuze Zhu
{"title":"MGNN:通用分子势矩图神经网络","authors":"Jian Chang, Shuze Zhu","doi":"10.1038/s41524-025-01541-5","DOIUrl":null,"url":null,"abstract":"<p>The quest for efficient and robust deep learning models for molecular systems representation is increasingly critical in scientific exploration. The advent of message passing neural networks has marked a transformative era in graph-based learning, particularly in the realm of predicting chemical properties and expediting molecular dynamics studies. We present the Moment Graph Neural Network (MGNN), a rotation-invariant message passing neural network architecture that capitalizes on the moment representation learning of 3D molecular graphs, is adept at capturing the nuanced spatial relationships inherent in three-dimensional molecular structures. From benchmark tests on public datasets, MGNN delivers multiple state-of-the-art results on QM9, revised MD17 and MD17-ethanol. Its generalizability and efficiency are also tested in additional systems including 3BPA and 25-element high-entropy alloys. The prowess of MGNN also extends to dynamic simulations, accurately predicting the structural and kinetic properties of complex systems such as amorphous electrolytes, with results that closely align with those from ab-initio simulations. The application of MGNN to the simulation of molecular spectra exemplifies its potential to offer a promising alternative to traditional electronic structure methods.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"55 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGNN: Moment Graph Neural Network for Universal Molecular Potentials\",\"authors\":\"Jian Chang, Shuze Zhu\",\"doi\":\"10.1038/s41524-025-01541-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quest for efficient and robust deep learning models for molecular systems representation is increasingly critical in scientific exploration. The advent of message passing neural networks has marked a transformative era in graph-based learning, particularly in the realm of predicting chemical properties and expediting molecular dynamics studies. We present the Moment Graph Neural Network (MGNN), a rotation-invariant message passing neural network architecture that capitalizes on the moment representation learning of 3D molecular graphs, is adept at capturing the nuanced spatial relationships inherent in three-dimensional molecular structures. From benchmark tests on public datasets, MGNN delivers multiple state-of-the-art results on QM9, revised MD17 and MD17-ethanol. Its generalizability and efficiency are also tested in additional systems including 3BPA and 25-element high-entropy alloys. The prowess of MGNN also extends to dynamic simulations, accurately predicting the structural and kinetic properties of complex systems such as amorphous electrolytes, with results that closely align with those from ab-initio simulations. The application of MGNN to the simulation of molecular spectra exemplifies its potential to offer a promising alternative to traditional electronic structure methods.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01541-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01541-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在科学探索中,为分子系统表征寻找高效、稳健的深度学习模型变得越来越重要。信息传递神经网络的出现标志着基于图的学习进入了一个变革时代,特别是在预测化学性质和加速分子动力学研究方面。我们提出了矩图神经网络(MGNN),这是一种旋转不变的消息传递神经网络架构,利用3D分子图的矩表示学习,擅长捕捉三维分子结构中固有的细微空间关系。从公共数据集的基准测试中,MGNN提供了QM9,修订MD17和MD17-乙醇的多个最先进的结果。在3BPA和25元素高熵合金等附加体系中也测试了其通用性和效率。MGNN的能力也扩展到动态模拟,准确预测复杂系统(如非晶电解质)的结构和动力学特性,其结果与从头算模拟的结果密切一致。MGNN在分子光谱模拟中的应用证明了它的潜力,为传统的电子结构方法提供了一个有前途的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MGNN: Moment Graph Neural Network for Universal Molecular Potentials

MGNN: Moment Graph Neural Network for Universal Molecular Potentials

The quest for efficient and robust deep learning models for molecular systems representation is increasingly critical in scientific exploration. The advent of message passing neural networks has marked a transformative era in graph-based learning, particularly in the realm of predicting chemical properties and expediting molecular dynamics studies. We present the Moment Graph Neural Network (MGNN), a rotation-invariant message passing neural network architecture that capitalizes on the moment representation learning of 3D molecular graphs, is adept at capturing the nuanced spatial relationships inherent in three-dimensional molecular structures. From benchmark tests on public datasets, MGNN delivers multiple state-of-the-art results on QM9, revised MD17 and MD17-ethanol. Its generalizability and efficiency are also tested in additional systems including 3BPA and 25-element high-entropy alloys. The prowess of MGNN also extends to dynamic simulations, accurately predicting the structural and kinetic properties of complex systems such as amorphous electrolytes, with results that closely align with those from ab-initio simulations. The application of MGNN to the simulation of molecular spectra exemplifies its potential to offer a promising alternative to traditional electronic structure methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信