Yibo Sun, Cong Hou, Nguyen-Dung Tran, Yuhang Lu, Zimo Li, Ying Chen, Jun Ni
{"title":"EFTGAN:用于高熵合金研究的元素特征和传输校正数据增强","authors":"Yibo Sun, Cong Hou, Nguyen-Dung Tran, Yuhang Lu, Zimo Li, Ying Chen, Jun Ni","doi":"10.1038/s41524-025-01548-y","DOIUrl":null,"url":null,"abstract":"<p>Using machine learning to predict and design materials is an important mean of accelerating material development. One way to improve the accuracy of machine learning predictions is to introduce material structures as descriptors. However, the complexity of computing material structures limits the practical use of these models. To address this challenge and improve prediction accuracy in small data sets, we develop a generative network framework: Elemental Features enhanced and Transferring corrected data augmentation in Generative Adversarial Networks (EFTGAN). Combining the elemental convolution technique with Generative Adversarial Networks (GAN), EFTGAN provides a robust and efficient approach for generating data containing elemental and structural information that can be used not only for data augmentation to improve model accuracy, but also for prediction when the structures are unknown. Applying this framework to the FeNiCoCrMn/Pd high-entropy alloys, we successfully improve the prediction accuracy in a small data set and predict the concentration-dependent formation energies, lattices, and magnetic moments in quinary systems. This study provides a new algorithm to improve the performance and usability of deep learning with structures as inputs, which is effective and accurate for the prediction and development of materials for small data sets.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFTGAN: Elemental features and transferring corrected data augmentation for the study of high-entropy alloys\",\"authors\":\"Yibo Sun, Cong Hou, Nguyen-Dung Tran, Yuhang Lu, Zimo Li, Ying Chen, Jun Ni\",\"doi\":\"10.1038/s41524-025-01548-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using machine learning to predict and design materials is an important mean of accelerating material development. One way to improve the accuracy of machine learning predictions is to introduce material structures as descriptors. However, the complexity of computing material structures limits the practical use of these models. To address this challenge and improve prediction accuracy in small data sets, we develop a generative network framework: Elemental Features enhanced and Transferring corrected data augmentation in Generative Adversarial Networks (EFTGAN). Combining the elemental convolution technique with Generative Adversarial Networks (GAN), EFTGAN provides a robust and efficient approach for generating data containing elemental and structural information that can be used not only for data augmentation to improve model accuracy, but also for prediction when the structures are unknown. Applying this framework to the FeNiCoCrMn/Pd high-entropy alloys, we successfully improve the prediction accuracy in a small data set and predict the concentration-dependent formation energies, lattices, and magnetic moments in quinary systems. This study provides a new algorithm to improve the performance and usability of deep learning with structures as inputs, which is effective and accurate for the prediction and development of materials for small data sets.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01548-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01548-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
EFTGAN: Elemental features and transferring corrected data augmentation for the study of high-entropy alloys
Using machine learning to predict and design materials is an important mean of accelerating material development. One way to improve the accuracy of machine learning predictions is to introduce material structures as descriptors. However, the complexity of computing material structures limits the practical use of these models. To address this challenge and improve prediction accuracy in small data sets, we develop a generative network framework: Elemental Features enhanced and Transferring corrected data augmentation in Generative Adversarial Networks (EFTGAN). Combining the elemental convolution technique with Generative Adversarial Networks (GAN), EFTGAN provides a robust and efficient approach for generating data containing elemental and structural information that can be used not only for data augmentation to improve model accuracy, but also for prediction when the structures are unknown. Applying this framework to the FeNiCoCrMn/Pd high-entropy alloys, we successfully improve the prediction accuracy in a small data set and predict the concentration-dependent formation energies, lattices, and magnetic moments in quinary systems. This study provides a new algorithm to improve the performance and usability of deep learning with structures as inputs, which is effective and accurate for the prediction and development of materials for small data sets.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.