植物病原真菌用保守的酶效应物劫持磷酸盐信号。

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-02-28 Epub Date: 2025-02-27 DOI:10.1126/science.adl5764
Carl L McCombe, Alex Wegner, Louisa Wirtz, Chenie S Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath
{"title":"植物病原真菌用保守的酶效应物劫持磷酸盐信号。","authors":"Carl L McCombe, Alex Wegner, Louisa Wirtz, Chenie S Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath","doi":"10.1126/science.adl5764","DOIUrl":null,"url":null,"abstract":"<p><p>Inorganic phosphate (Pi) is essential for life, and plant cells monitor Pi availability by sensing inositol pyrophosphate (PP-InsP) levels. In this work, we describe the hijacking of plant phosphate sensing by a conserved family of Nudix hydrolase effectors from pathogenic <i>Magnaporthe</i> and <i>Colletotrichum</i> fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze PP-InsP. Gene deletion experiments of Nudix effectors in <i>Magnaporthe oryzae</i>, <i>Colletotrichum higginsianum</i>, and <i>Colletotrichum graminicola</i> indicate that PP-InsP hydrolysis substantially enhances disease symptoms in diverse pathosystems. Further, we show that this conserved effector family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, used by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6737","pages":"955-962"},"PeriodicalIF":45.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant pathogenic fungi hijack phosphate signaling with conserved enzymatic effectors.\",\"authors\":\"Carl L McCombe, Alex Wegner, Louisa Wirtz, Chenie S Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath\",\"doi\":\"10.1126/science.adl5764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inorganic phosphate (Pi) is essential for life, and plant cells monitor Pi availability by sensing inositol pyrophosphate (PP-InsP) levels. In this work, we describe the hijacking of plant phosphate sensing by a conserved family of Nudix hydrolase effectors from pathogenic <i>Magnaporthe</i> and <i>Colletotrichum</i> fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze PP-InsP. Gene deletion experiments of Nudix effectors in <i>Magnaporthe oryzae</i>, <i>Colletotrichum higginsianum</i>, and <i>Colletotrichum graminicola</i> indicate that PP-InsP hydrolysis substantially enhances disease symptoms in diverse pathosystems. Further, we show that this conserved effector family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, used by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.</p>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"387 6737\",\"pages\":\"955-962\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/science.adl5764\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adl5764","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

无机磷酸盐(Pi)对生命至关重要,植物细胞通过感知焦磷酸肌醇(PP-InsP)水平来监测Pi的有效性。在这项工作中,我们描述了从致病性Magnaporthe和Colletotrichum真菌中获得的一个保守家族的Nudix水解酶效应物劫持植物的磷酸盐感知。Nudix效应家族的结构和酶分析表明,它们有选择性地水解PP-InsP。对稻瘟病菌(Magnaporthe oryzae)、higginsianum炭疽菌(Colletotrichum graminicola)和炭疽菌(Colletotrichum graminicola)中Nudix效应物的基因缺失实验表明,PP-InsP水解可显著增强不同病理系统的疾病症状。此外,我们发现这个保守的效应家族在植物中诱导磷酸盐饥饿信号。我们的研究阐明了多种植物致病真菌使用的一种分子机制,该机制操纵高度保守的植物磷酸盐敏感途径来加剧疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant pathogenic fungi hijack phosphate signaling with conserved enzymatic effectors.

Inorganic phosphate (Pi) is essential for life, and plant cells monitor Pi availability by sensing inositol pyrophosphate (PP-InsP) levels. In this work, we describe the hijacking of plant phosphate sensing by a conserved family of Nudix hydrolase effectors from pathogenic Magnaporthe and Colletotrichum fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze PP-InsP. Gene deletion experiments of Nudix effectors in Magnaporthe oryzae, Colletotrichum higginsianum, and Colletotrichum graminicola indicate that PP-InsP hydrolysis substantially enhances disease symptoms in diverse pathosystems. Further, we show that this conserved effector family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, used by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信