多靶点苯基哌替啶- isatin杂合体:设计、合成、生物和硅评价作为神经退行性疾病治疗的单胺氧化酶和乙酰胆碱酯酶抑制剂

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nikita Negi, Senthil R. Ayyannan, Rati K. P. Tripathi
{"title":"多靶点苯基哌替啶- isatin杂合体:设计、合成、生物和硅评价作为神经退行性疾病治疗的单胺氧化酶和乙酰胆碱酯酶抑制剂","authors":"Nikita Negi,&nbsp;Senthil R. Ayyannan,&nbsp;Rati K. P. Tripathi","doi":"10.1007/s10822-025-00588-2","DOIUrl":null,"url":null,"abstract":"<p>Neurodegenerative diseases (NDDs) like Alzheimer’s and Parkinson’s, characterized by gradual loss of neuronal structure and function, results in cognitive and motor impairments. These complex disorders involve multiple pathogenic mechanisms, including neurotransmitter imbalances, oxidative stress, and protein misfolding, necessitating multifunctional therapeutic approaches. Piperidine and isatin are valuable scaffolds in drug design due to their favorable pharmacokinetic profiles, ability to cross blood–brain barrier, and ease of modification. This study focuses on design, synthesis, and evaluation of benzylpiperidine–isatin hybrids as dual inhibitors targeting key enzymes implicated in NDDs: monoamine oxidases (MAO-A/B) and acetylcholinesterase (AChE). Strategic hybridization of piperidine and isatin produced novel benzylpiperidine–isatin hybrids, combining pharmacological benefits of both scaffolds. Synthesized hybrids were tested for MAO-A/B and AChE inhibitory effects. <b>15</b> emerged as a lead inhibitor for both MAO-A (IC<sub>50</sub> = 0.108 ± 0.004 μM, competitive and reversible) and AChE (IC<sub>50</sub> = 0.034 ± 0.002 μM, mixed and reversible), outperforming donepezil in AChE inhibition. <b>4</b> showed significant MAO-B inhibition (IC<sub>50</sub> = 0.057 ± 0.001 μM, competitive and reversible). SAR studies identified crucial structural elements for potency and selectivity, while molecular docking revealed key interactions stabilizing the enzyme–inhibitor complexes. MD simulations of lead molecules demonstrate the ligand's suitability for strong and consistent binding to the respective proteins. Lead compounds were non-neurotoxic, exhibited good antioxidant properties, and had favorable in silico ADMET predictions. These findings suggest that benzylpiperidine–isatin hybrids hold promise as multifunctional agents against NDDs, warranting further refinement to enhance their efficacy and safety.</p><p>Multi-target directed ligands (MTDLs): A series of benzylpiperidine–isatin hybrids were designed, synthesized and assessed as multifunctional agents for treating neurodegenerative diseases, focusing on their ability to inhibit both MAO-A/B and AChE. Molecular docking identified crucial enzyme–inhibitor interactions, while computational assessments of molecular properties and ADMET profiles confirmed their drug-like qualities.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-targeted benzylpiperidine–isatin hybrids: Design, synthesis, biological and in silico evaluation as monoamine oxidases and acetylcholinesterase inhibitors for neurodegenerative disease therapies\",\"authors\":\"Nikita Negi,&nbsp;Senthil R. Ayyannan,&nbsp;Rati K. P. Tripathi\",\"doi\":\"10.1007/s10822-025-00588-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neurodegenerative diseases (NDDs) like Alzheimer’s and Parkinson’s, characterized by gradual loss of neuronal structure and function, results in cognitive and motor impairments. These complex disorders involve multiple pathogenic mechanisms, including neurotransmitter imbalances, oxidative stress, and protein misfolding, necessitating multifunctional therapeutic approaches. Piperidine and isatin are valuable scaffolds in drug design due to their favorable pharmacokinetic profiles, ability to cross blood–brain barrier, and ease of modification. This study focuses on design, synthesis, and evaluation of benzylpiperidine–isatin hybrids as dual inhibitors targeting key enzymes implicated in NDDs: monoamine oxidases (MAO-A/B) and acetylcholinesterase (AChE). Strategic hybridization of piperidine and isatin produced novel benzylpiperidine–isatin hybrids, combining pharmacological benefits of both scaffolds. Synthesized hybrids were tested for MAO-A/B and AChE inhibitory effects. <b>15</b> emerged as a lead inhibitor for both MAO-A (IC<sub>50</sub> = 0.108 ± 0.004 μM, competitive and reversible) and AChE (IC<sub>50</sub> = 0.034 ± 0.002 μM, mixed and reversible), outperforming donepezil in AChE inhibition. <b>4</b> showed significant MAO-B inhibition (IC<sub>50</sub> = 0.057 ± 0.001 μM, competitive and reversible). SAR studies identified crucial structural elements for potency and selectivity, while molecular docking revealed key interactions stabilizing the enzyme–inhibitor complexes. MD simulations of lead molecules demonstrate the ligand's suitability for strong and consistent binding to the respective proteins. Lead compounds were non-neurotoxic, exhibited good antioxidant properties, and had favorable in silico ADMET predictions. These findings suggest that benzylpiperidine–isatin hybrids hold promise as multifunctional agents against NDDs, warranting further refinement to enhance their efficacy and safety.</p><p>Multi-target directed ligands (MTDLs): A series of benzylpiperidine–isatin hybrids were designed, synthesized and assessed as multifunctional agents for treating neurodegenerative diseases, focusing on their ability to inhibit both MAO-A/B and AChE. Molecular docking identified crucial enzyme–inhibitor interactions, while computational assessments of molecular properties and ADMET profiles confirmed their drug-like qualities.</p>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-025-00588-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00588-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病(ndd),如阿尔茨海默病和帕金森病,以神经元结构和功能的逐渐丧失为特征,导致认知和运动障碍。这些复杂的疾病涉及多种致病机制,包括神经递质失衡、氧化应激和蛋白质错误折叠,需要多功能治疗方法。由于其良好的药代动力学特征、穿越血脑屏障的能力和易于修饰,哌啶和伊司汀在药物设计中是有价值的支架。本研究的重点是设计、合成和评价苯基哌啶- isatin杂交体作为ndd中涉及的关键酶:单胺氧化酶(MAO-A/B)和乙酰胆碱酯酶(AChE)的双重抑制剂。哌啶和isatin的策略性杂交产生了新的苯基哌啶- isatin杂交种,结合了两种支架的药理优势。合成杂交种对MAO-A/B和AChE的抑制作用进行了测试。15作为MAO-A (IC50 = 0.108±0.004 μM,竞争性和可逆性)和AChE (IC50 = 0.034±0.002 μM,混合性和可逆性)的先导抑制剂,对AChE的抑制均优于多奈哌齐。其中4个具有明显的MAO-B抑制作用(IC50 = 0.057±0.001 μM,竞争性可逆)。SAR研究确定了效力和选择性的关键结构要素,而分子对接揭示了稳定酶抑制剂复合物的关键相互作用。铅分子的MD模拟证明了配体与相应蛋白质的强而一致的结合的适用性。铅化合物无神经毒性,具有良好的抗氧化性能,并具有良好的硅ADMET预测。这些发现表明,苯基哌啶- isatin杂交体有望成为抗ndd的多功能药物,需要进一步改进以提高其疗效和安全性。多靶点定向配体(mtdl):设计、合成了一系列苯基哌啶- isatin杂交体,并评估了它们作为治疗神经退行性疾病的多功能药物,重点研究了它们抑制MAO-A/B和AChE的能力。分子对接确定了关键的酶抑制剂相互作用,而分子性质和ADMET谱的计算评估证实了它们的药物性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-targeted benzylpiperidine–isatin hybrids: Design, synthesis, biological and in silico evaluation as monoamine oxidases and acetylcholinesterase inhibitors for neurodegenerative disease therapies

Multi-targeted benzylpiperidine–isatin hybrids: Design, synthesis, biological and in silico evaluation as monoamine oxidases and acetylcholinesterase inhibitors for neurodegenerative disease therapies

Neurodegenerative diseases (NDDs) like Alzheimer’s and Parkinson’s, characterized by gradual loss of neuronal structure and function, results in cognitive and motor impairments. These complex disorders involve multiple pathogenic mechanisms, including neurotransmitter imbalances, oxidative stress, and protein misfolding, necessitating multifunctional therapeutic approaches. Piperidine and isatin are valuable scaffolds in drug design due to their favorable pharmacokinetic profiles, ability to cross blood–brain barrier, and ease of modification. This study focuses on design, synthesis, and evaluation of benzylpiperidine–isatin hybrids as dual inhibitors targeting key enzymes implicated in NDDs: monoamine oxidases (MAO-A/B) and acetylcholinesterase (AChE). Strategic hybridization of piperidine and isatin produced novel benzylpiperidine–isatin hybrids, combining pharmacological benefits of both scaffolds. Synthesized hybrids were tested for MAO-A/B and AChE inhibitory effects. 15 emerged as a lead inhibitor for both MAO-A (IC50 = 0.108 ± 0.004 μM, competitive and reversible) and AChE (IC50 = 0.034 ± 0.002 μM, mixed and reversible), outperforming donepezil in AChE inhibition. 4 showed significant MAO-B inhibition (IC50 = 0.057 ± 0.001 μM, competitive and reversible). SAR studies identified crucial structural elements for potency and selectivity, while molecular docking revealed key interactions stabilizing the enzyme–inhibitor complexes. MD simulations of lead molecules demonstrate the ligand's suitability for strong and consistent binding to the respective proteins. Lead compounds were non-neurotoxic, exhibited good antioxidant properties, and had favorable in silico ADMET predictions. These findings suggest that benzylpiperidine–isatin hybrids hold promise as multifunctional agents against NDDs, warranting further refinement to enhance their efficacy and safety.

Multi-target directed ligands (MTDLs): A series of benzylpiperidine–isatin hybrids were designed, synthesized and assessed as multifunctional agents for treating neurodegenerative diseases, focusing on their ability to inhibit both MAO-A/B and AChE. Molecular docking identified crucial enzyme–inhibitor interactions, while computational assessments of molecular properties and ADMET profiles confirmed their drug-like qualities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信