人体伤亡操纵中抓取稳定性分析的高保真仿真框架

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Qianwen Zhao;Rajarshi Roy;Chad Spurlock;Kevin Lister;Long Wang
{"title":"人体伤亡操纵中抓取稳定性分析的高保真仿真框架","authors":"Qianwen Zhao;Rajarshi Roy;Chad Spurlock;Kevin Lister;Long Wang","doi":"10.1109/TMRB.2025.3527687","DOIUrl":null,"url":null,"abstract":"Recently, there has been a growing interest in rescue robots due to their vital role in addressing emergency scenarios and providing crucial assistance in challenging or hazardous situations where human intervention is problematic. However, very few of these robots are capable of actively engaging with humans and undertaking physical manipulation tasks. This limitation is largely attributed to the absence of tools that can realistically simulate physical interactions, especially the contact mechanisms between a robotic gripper and a human body. In this study, we aim to address key limitations in current developments towards robotic casualty manipulation. Firstly, we present an integrative simulation framework for casualty manipulation. We adapt a finite element method (FEM) tool into the grasping and manipulation scenario, and the developed framework can provide accurate biomechanical reactions resulting from manipulation. Secondly, we conduct a detailed assessment of grasping stability during casualty grasping and manipulation simulations. To validate the necessity and superior performance of the proposed high-fidelity simulation framework, we conducted a qualitative and quantitative comparison of grasping stability analyses between the proposed framework and the state-of-the-art multi-body physics simulations. Through these efforts, we have taken the first step towards a feasible solution for robotic casualty manipulation.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"281-289"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Fidelity Simulation Framework for Grasping Stability Analysis in Human Casualty Manipulation\",\"authors\":\"Qianwen Zhao;Rajarshi Roy;Chad Spurlock;Kevin Lister;Long Wang\",\"doi\":\"10.1109/TMRB.2025.3527687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a growing interest in rescue robots due to their vital role in addressing emergency scenarios and providing crucial assistance in challenging or hazardous situations where human intervention is problematic. However, very few of these robots are capable of actively engaging with humans and undertaking physical manipulation tasks. This limitation is largely attributed to the absence of tools that can realistically simulate physical interactions, especially the contact mechanisms between a robotic gripper and a human body. In this study, we aim to address key limitations in current developments towards robotic casualty manipulation. Firstly, we present an integrative simulation framework for casualty manipulation. We adapt a finite element method (FEM) tool into the grasping and manipulation scenario, and the developed framework can provide accurate biomechanical reactions resulting from manipulation. Secondly, we conduct a detailed assessment of grasping stability during casualty grasping and manipulation simulations. To validate the necessity and superior performance of the proposed high-fidelity simulation framework, we conducted a qualitative and quantitative comparison of grasping stability analyses between the proposed framework and the state-of-the-art multi-body physics simulations. Through these efforts, we have taken the first step towards a feasible solution for robotic casualty manipulation.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"7 1\",\"pages\":\"281-289\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10835809/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835809/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们对救援机器人的兴趣越来越大,因为它们在处理紧急情况和在人类干预有问题的具有挑战性或危险情况下提供关键援助方面发挥着至关重要的作用。然而,这些机器人中很少有能够主动与人类接触并承担物理操作任务的。这种限制很大程度上归因于缺乏能够真实模拟物理相互作用的工具,特别是机器人抓手与人体之间的接触机制。在这项研究中,我们的目标是解决当前机器人伤亡处理发展中的关键限制。首先,我们提出了一个伤亡操纵的综合仿真框架。我们将有限元方法(FEM)工具应用于抓取和操作场景,开发的框架可以提供精确的操作产生的生物力学反应。其次,我们在伤亡抓取和操纵仿真中对抓取稳定性进行了详细的评估。为了验证所提出的高保真仿真框架的必要性和优越的性能,我们对所提出的框架与最先进的多体物理仿真之间的抓取稳定性分析进行了定性和定量比较。通过这些努力,我们已经向机器人伤亡处理的可行解决方案迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High-Fidelity Simulation Framework for Grasping Stability Analysis in Human Casualty Manipulation
Recently, there has been a growing interest in rescue robots due to their vital role in addressing emergency scenarios and providing crucial assistance in challenging or hazardous situations where human intervention is problematic. However, very few of these robots are capable of actively engaging with humans and undertaking physical manipulation tasks. This limitation is largely attributed to the absence of tools that can realistically simulate physical interactions, especially the contact mechanisms between a robotic gripper and a human body. In this study, we aim to address key limitations in current developments towards robotic casualty manipulation. Firstly, we present an integrative simulation framework for casualty manipulation. We adapt a finite element method (FEM) tool into the grasping and manipulation scenario, and the developed framework can provide accurate biomechanical reactions resulting from manipulation. Secondly, we conduct a detailed assessment of grasping stability during casualty grasping and manipulation simulations. To validate the necessity and superior performance of the proposed high-fidelity simulation framework, we conducted a qualitative and quantitative comparison of grasping stability analyses between the proposed framework and the state-of-the-art multi-body physics simulations. Through these efforts, we have taken the first step towards a feasible solution for robotic casualty manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信