非周期多功能AlN/Al2O3纳米多层膜的合成与表征

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Danielle E. White , Koushik Jagadish , Yu-Tsun Shao , Andrea M. Hodge
{"title":"非周期多功能AlN/Al2O3纳米多层膜的合成与表征","authors":"Danielle E. White ,&nbsp;Koushik Jagadish ,&nbsp;Yu-Tsun Shao ,&nbsp;Andrea M. Hodge","doi":"10.1016/j.tsf.2025.140638","DOIUrl":null,"url":null,"abstract":"<div><div>Optical-mechanical multifunctionality in ceramic nanomultilayered coatings is an area of research relatively unexplored. Particularly, layer aperiodicity has been shown to improve transmittance, where the effect on mechanical deformation remains unknown. Here, AlN/Al<sub>2</sub>O<sub>3</sub> nanomultilayers are synthesized via sputtering with four unique, optically optimized aperiodic layer structures with a minimum ultraviolet-visible-near-infrared transmittance of 90% and with an Al<sub>2</sub>O<sub>3</sub> volume fraction ranging from 30% to 73%. Deformation was explored at different length scales, revealing the effect of local volume fraction and individual layer thicknesses within the aperiodic structure. It was determined that the deformation behavior is correlated to the local AlN or Al<sub>2</sub>O<sub>3</sub> volume fraction within a given layer stack, where individual layer thickness and adjacent layer interactions were shown to affect crack propagation.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"815 ","pages":"Article 140638"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of aperiodic multifunctional AlN/Al2O3 nanomultilayers\",\"authors\":\"Danielle E. White ,&nbsp;Koushik Jagadish ,&nbsp;Yu-Tsun Shao ,&nbsp;Andrea M. Hodge\",\"doi\":\"10.1016/j.tsf.2025.140638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optical-mechanical multifunctionality in ceramic nanomultilayered coatings is an area of research relatively unexplored. Particularly, layer aperiodicity has been shown to improve transmittance, where the effect on mechanical deformation remains unknown. Here, AlN/Al<sub>2</sub>O<sub>3</sub> nanomultilayers are synthesized via sputtering with four unique, optically optimized aperiodic layer structures with a minimum ultraviolet-visible-near-infrared transmittance of 90% and with an Al<sub>2</sub>O<sub>3</sub> volume fraction ranging from 30% to 73%. Deformation was explored at different length scales, revealing the effect of local volume fraction and individual layer thicknesses within the aperiodic structure. It was determined that the deformation behavior is correlated to the local AlN or Al<sub>2</sub>O<sub>3</sub> volume fraction within a given layer stack, where individual layer thickness and adjacent layer interactions were shown to affect crack propagation.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"815 \",\"pages\":\"Article 140638\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609025000392\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000392","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷纳米多层涂层的光-机械多功能性是一个相对未开发的研究领域。特别是,层的非周期性已被证明可以提高透光率,但对机械变形的影响尚不清楚。本文采用溅射法合成了四种独特的光学优化的非周期层结构的AlN/Al2O3纳米多层膜,其紫外-可见-近红外透过率最低为90%,Al2O3体积分数为30%至73%。研究了不同长度尺度下的变形,揭示了非周期结构内部局部体积分数和单个层厚度的影响。结果表明,变形行为与给定层内局部AlN或Al2O3的体积分数有关,其中单个层的厚度和相邻层的相互作用显示影响裂纹扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and characterization of aperiodic multifunctional AlN/Al2O3 nanomultilayers
Optical-mechanical multifunctionality in ceramic nanomultilayered coatings is an area of research relatively unexplored. Particularly, layer aperiodicity has been shown to improve transmittance, where the effect on mechanical deformation remains unknown. Here, AlN/Al2O3 nanomultilayers are synthesized via sputtering with four unique, optically optimized aperiodic layer structures with a minimum ultraviolet-visible-near-infrared transmittance of 90% and with an Al2O3 volume fraction ranging from 30% to 73%. Deformation was explored at different length scales, revealing the effect of local volume fraction and individual layer thicknesses within the aperiodic structure. It was determined that the deformation behavior is correlated to the local AlN or Al2O3 volume fraction within a given layer stack, where individual layer thickness and adjacent layer interactions were shown to affect crack propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信