学龄期自闭症研究中功能连接MRI富集分析的统计特性

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Austin S. Ferguson , Tomoyuki Nishino , Jessica B. Girault , Heather C. Hazlett , Robert T. Schultz , Natasha Marrus , Martin Styner , Santiago Torres-Gomez , Guido Gerig , Alan Evans , Stephen R. Dager , Annette M. Estes , Lonnie Zwaigenbaum , Juhi Pandey , Tanya St. John , Joseph Piven , John R. Pruett Jr. , Alexandre A. Todorov , for the IBIS Network
{"title":"学龄期自闭症研究中功能连接MRI富集分析的统计特性","authors":"Austin S. Ferguson ,&nbsp;Tomoyuki Nishino ,&nbsp;Jessica B. Girault ,&nbsp;Heather C. Hazlett ,&nbsp;Robert T. Schultz ,&nbsp;Natasha Marrus ,&nbsp;Martin Styner ,&nbsp;Santiago Torres-Gomez ,&nbsp;Guido Gerig ,&nbsp;Alan Evans ,&nbsp;Stephen R. Dager ,&nbsp;Annette M. Estes ,&nbsp;Lonnie Zwaigenbaum ,&nbsp;Juhi Pandey ,&nbsp;Tanya St. John ,&nbsp;Joseph Piven ,&nbsp;John R. Pruett Jr. ,&nbsp;Alexandre A. Todorov ,&nbsp;for the IBIS Network","doi":"10.1016/j.dcn.2025.101534","DOIUrl":null,"url":null,"abstract":"<div><div>Mass univariate testing on functional connectivity MRI (fcMRI) data is limited by difficulties achieving experiment-wide significance. Recent work addressing this problem has used enrichment analysis, which aggregates univariate screening statistics for a set of variables into a single enrichment statistic. There have been promising results using this method to explore fcMRI-behavior associations. However, there has not yet been a rigorous examination of the statistical properties of enrichment analysis when applied to fcMRI data. Establishing power for fcMRI enrichment analysis will be important for future neuropsychiatric and cognitive neuroscience study designs that plan to include this method. Here, we use realistic simulation methods, which mimic the covariance structure of fcMRI data, to examine the false positive rate and statistical power of one technique for enrichment analysis, over-representation analysis. We find it can attain high power even for moderate effects and sample sizes, and it strongly outperforms univariate analysis. The false positive rate associated with permutation testing is robust.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"72 ","pages":"Article 101534"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical properties of functional connectivity MRI enrichment analysis in school-age autism research\",\"authors\":\"Austin S. Ferguson ,&nbsp;Tomoyuki Nishino ,&nbsp;Jessica B. Girault ,&nbsp;Heather C. Hazlett ,&nbsp;Robert T. Schultz ,&nbsp;Natasha Marrus ,&nbsp;Martin Styner ,&nbsp;Santiago Torres-Gomez ,&nbsp;Guido Gerig ,&nbsp;Alan Evans ,&nbsp;Stephen R. Dager ,&nbsp;Annette M. Estes ,&nbsp;Lonnie Zwaigenbaum ,&nbsp;Juhi Pandey ,&nbsp;Tanya St. John ,&nbsp;Joseph Piven ,&nbsp;John R. Pruett Jr. ,&nbsp;Alexandre A. Todorov ,&nbsp;for the IBIS Network\",\"doi\":\"10.1016/j.dcn.2025.101534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mass univariate testing on functional connectivity MRI (fcMRI) data is limited by difficulties achieving experiment-wide significance. Recent work addressing this problem has used enrichment analysis, which aggregates univariate screening statistics for a set of variables into a single enrichment statistic. There have been promising results using this method to explore fcMRI-behavior associations. However, there has not yet been a rigorous examination of the statistical properties of enrichment analysis when applied to fcMRI data. Establishing power for fcMRI enrichment analysis will be important for future neuropsychiatric and cognitive neuroscience study designs that plan to include this method. Here, we use realistic simulation methods, which mimic the covariance structure of fcMRI data, to examine the false positive rate and statistical power of one technique for enrichment analysis, over-representation analysis. We find it can attain high power even for moderate effects and sample sizes, and it strongly outperforms univariate analysis. The false positive rate associated with permutation testing is robust.</div></div>\",\"PeriodicalId\":49083,\"journal\":{\"name\":\"Developmental Cognitive Neuroscience\",\"volume\":\"72 \",\"pages\":\"Article 101534\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878929325000295\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

功能连接MRI (fcMRI)数据的大规模单变量测试受到难以实现实验范围意义的限制。最近解决这个问题的工作使用了富集分析,它将一组变量的单变量筛选统计数据汇总为单个富集统计数据。使用这种方法来探索fcmri行为关联已经有了可喜的结果。然而,在应用于fcMRI数据时,还没有对富集分析的统计特性进行严格的检查。建立功能性磁共振成像富集分析的能力对于未来计划采用这种方法的神经精神病学和认知神经科学研究设计将是重要的。在这里,我们使用逼真的模拟方法,模拟fcMRI数据的协方差结构,来检验一种富集分析技术的假阳性率和统计能力,即过度代表性分析。我们发现,即使在中等效果和样本大小的情况下,它也可以获得高功率,并且它明显优于单变量分析。与置换检验相关的假阳性率具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical properties of functional connectivity MRI enrichment analysis in school-age autism research
Mass univariate testing on functional connectivity MRI (fcMRI) data is limited by difficulties achieving experiment-wide significance. Recent work addressing this problem has used enrichment analysis, which aggregates univariate screening statistics for a set of variables into a single enrichment statistic. There have been promising results using this method to explore fcMRI-behavior associations. However, there has not yet been a rigorous examination of the statistical properties of enrichment analysis when applied to fcMRI data. Establishing power for fcMRI enrichment analysis will be important for future neuropsychiatric and cognitive neuroscience study designs that plan to include this method. Here, we use realistic simulation methods, which mimic the covariance structure of fcMRI data, to examine the false positive rate and statistical power of one technique for enrichment analysis, over-representation analysis. We find it can attain high power even for moderate effects and sample sizes, and it strongly outperforms univariate analysis. The false positive rate associated with permutation testing is robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信