多媒体检索的无监督随机游走流形对比哈希

IF 4.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yunfei Chen, Yitian Long, Zhan Yang, Jun Long
{"title":"多媒体检索的无监督随机游走流形对比哈希","authors":"Yunfei Chen, Yitian Long, Zhan Yang, Jun Long","doi":"10.1007/s40747-025-01814-y","DOIUrl":null,"url":null,"abstract":"<p>With the rapid growth in both the variety and volume of data on networks, especially within social networks containing vast multimedia data such as text, images, and video, there is an urgent need for efficient methods to retrieve helpful information quickly. Due to their high computational efficiency and low storage costs, unsupervised deep cross-modal hashing methods have become the primary method for managing large-scale multimedia data. However, existing unsupervised deep cross-modal hashing methods still need help with issues such as inaccurate measurement of semantic similarity information, complex network architectures, and incomplete constraints among multimedia data. To address these issues, we propose an Unsupervised Random Walk Manifold Contrastive Hashing (<b>URWMCH</b>) method, designing a simple deep learning architecture. First, we build a random walk-based manifold similarity matrix based on the random walk strategy and modal-individual similarity structure. Second, we construct intra- and inter-modal similarity preservation and coexistent similarity preservation loss based on contrastive learning to constrain the training of hash functions, ensuring that the hash codes contain complete semantic association information. Finally, we designed comprehensive experiments on the MIRFlickr-25K, NUS-WIDE, and MS COCO datasets to demonstrate the effectiveness and superiority of the proposed <b>URWMCH</b> method.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"13 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised random walk manifold contrastive hashing for multimedia retrieval\",\"authors\":\"Yunfei Chen, Yitian Long, Zhan Yang, Jun Long\",\"doi\":\"10.1007/s40747-025-01814-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid growth in both the variety and volume of data on networks, especially within social networks containing vast multimedia data such as text, images, and video, there is an urgent need for efficient methods to retrieve helpful information quickly. Due to their high computational efficiency and low storage costs, unsupervised deep cross-modal hashing methods have become the primary method for managing large-scale multimedia data. However, existing unsupervised deep cross-modal hashing methods still need help with issues such as inaccurate measurement of semantic similarity information, complex network architectures, and incomplete constraints among multimedia data. To address these issues, we propose an Unsupervised Random Walk Manifold Contrastive Hashing (<b>URWMCH</b>) method, designing a simple deep learning architecture. First, we build a random walk-based manifold similarity matrix based on the random walk strategy and modal-individual similarity structure. Second, we construct intra- and inter-modal similarity preservation and coexistent similarity preservation loss based on contrastive learning to constrain the training of hash functions, ensuring that the hash codes contain complete semantic association information. Finally, we designed comprehensive experiments on the MIRFlickr-25K, NUS-WIDE, and MS COCO datasets to demonstrate the effectiveness and superiority of the proposed <b>URWMCH</b> method.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-025-01814-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01814-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着网络上数据的种类和数量的快速增长,特别是在包含大量多媒体数据(如文本、图像和视频)的社交网络中,迫切需要一种高效的方法来快速检索有用的信息。由于计算效率高、存储成本低,无监督深度跨模态哈希方法已成为管理大规模多媒体数据的主要方法。然而,现有的无监督深度跨模态哈希方法仍然需要解决语义相似度信息测量不准确、网络结构复杂、多媒体数据约束不完整等问题。为了解决这些问题,我们提出了一种无监督随机漫步流形对比哈希(URWMCH)方法,设计了一个简单的深度学习架构。首先,基于随机行走策略和模态-个体相似性结构,构建了基于随机行走的流形相似性矩阵。其次,基于对比学习构造模内、模间相似性保存和共存相似性保存损失,约束哈希函数的训练,保证哈希码包含完整的语义关联信息;最后,我们在MIRFlickr-25K、NUS-WIDE和MS COCO数据集上设计了综合实验,以验证所提出的URWMCH方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised random walk manifold contrastive hashing for multimedia retrieval

With the rapid growth in both the variety and volume of data on networks, especially within social networks containing vast multimedia data such as text, images, and video, there is an urgent need for efficient methods to retrieve helpful information quickly. Due to their high computational efficiency and low storage costs, unsupervised deep cross-modal hashing methods have become the primary method for managing large-scale multimedia data. However, existing unsupervised deep cross-modal hashing methods still need help with issues such as inaccurate measurement of semantic similarity information, complex network architectures, and incomplete constraints among multimedia data. To address these issues, we propose an Unsupervised Random Walk Manifold Contrastive Hashing (URWMCH) method, designing a simple deep learning architecture. First, we build a random walk-based manifold similarity matrix based on the random walk strategy and modal-individual similarity structure. Second, we construct intra- and inter-modal similarity preservation and coexistent similarity preservation loss based on contrastive learning to constrain the training of hash functions, ensuring that the hash codes contain complete semantic association information. Finally, we designed comprehensive experiments on the MIRFlickr-25K, NUS-WIDE, and MS COCO datasets to demonstrate the effectiveness and superiority of the proposed URWMCH method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信