将碎片化视角与来自部分面数据集的高维模型的加性深度学习统一起来。

npj Biological Physics and Mechanics Pub Date : 2025-01-01 Epub Date: 2025-02-24 DOI:10.1038/s44341-025-00009-3
Yufei Wu, Pei-Hsun Wu, Allison Chambliss, Denis Wirtz, Sean X Sun
{"title":"将碎片化视角与来自部分面数据集的高维模型的加性深度学习统一起来。","authors":"Yufei Wu, Pei-Hsun Wu, Allison Chambliss, Denis Wirtz, Sean X Sun","doi":"10.1038/s44341-025-00009-3","DOIUrl":null,"url":null,"abstract":"<p><p>Biological systems are complex networks where measurable functions emerge from interactions among thousands of components. Many studies aim to link biological function with molecular elements, yet quantifying their contributions simultaneously remains challenging, especially at the single-cell level. We propose a machine-learning approach that integrates faceted data subsets to reconstruct a complete view of the system using conditional distributions. We develop both polynomial regression and neural network models, validated with two examples: a mechanical spring network under external forces and an 8-dimensional biological network involving the senescence marker P53, using single-cell data. Our results demonstrate successful system reconstruction from partial datasets, with predictive accuracy improving as more variables are measured. This approach offers a systematic method to integrate fragmented experimental data, enabling unbiased and holistic modeling of complex biological functions.</p>","PeriodicalId":501703,"journal":{"name":"npj Biological Physics and Mechanics","volume":"2 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850287/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unifying fragmented perspectives with additive deep learning for high-dimensional models from partial faceted datasets.\",\"authors\":\"Yufei Wu, Pei-Hsun Wu, Allison Chambliss, Denis Wirtz, Sean X Sun\",\"doi\":\"10.1038/s44341-025-00009-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological systems are complex networks where measurable functions emerge from interactions among thousands of components. Many studies aim to link biological function with molecular elements, yet quantifying their contributions simultaneously remains challenging, especially at the single-cell level. We propose a machine-learning approach that integrates faceted data subsets to reconstruct a complete view of the system using conditional distributions. We develop both polynomial regression and neural network models, validated with two examples: a mechanical spring network under external forces and an 8-dimensional biological network involving the senescence marker P53, using single-cell data. Our results demonstrate successful system reconstruction from partial datasets, with predictive accuracy improving as more variables are measured. This approach offers a systematic method to integrate fragmented experimental data, enabling unbiased and holistic modeling of complex biological functions.</p>\",\"PeriodicalId\":501703,\"journal\":{\"name\":\"npj Biological Physics and Mechanics\",\"volume\":\"2 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850287/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biological Physics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44341-025-00009-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biological Physics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44341-025-00009-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物系统是一个复杂的网络,其中可测量的功能是由数千个组件之间的相互作用产生的。许多研究旨在将生物功能与分子元件联系起来,但同时量化它们的贡献仍然具有挑战性,特别是在单细胞水平上。我们提出了一种机器学习方法,该方法集成了多方面的数据子集,以使用条件分布重建系统的完整视图。我们开发了多项式回归和神经网络模型,并通过两个例子进行了验证:外力作用下的机械弹簧网络和使用单细胞数据的涉及衰老标志物P53的8维生物网络。我们的结果表明,从部分数据集成功地重建了系统,随着更多变量的测量,预测精度得到了提高。这种方法提供了一种系统的方法来整合碎片化的实验数据,使复杂生物功能的无偏和整体建模成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unifying fragmented perspectives with additive deep learning for high-dimensional models from partial faceted datasets.

Biological systems are complex networks where measurable functions emerge from interactions among thousands of components. Many studies aim to link biological function with molecular elements, yet quantifying their contributions simultaneously remains challenging, especially at the single-cell level. We propose a machine-learning approach that integrates faceted data subsets to reconstruct a complete view of the system using conditional distributions. We develop both polynomial regression and neural network models, validated with two examples: a mechanical spring network under external forces and an 8-dimensional biological network involving the senescence marker P53, using single-cell data. Our results demonstrate successful system reconstruction from partial datasets, with predictive accuracy improving as more variables are measured. This approach offers a systematic method to integrate fragmented experimental data, enabling unbiased and holistic modeling of complex biological functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信