多铁金属单层Cu(CrSe2)2†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ke Yang, Yuxuan Zhou, Yaozhenghang Ma and Hua Wu
{"title":"多铁金属单层Cu(CrSe2)2†","authors":"Ke Yang, Yuxuan Zhou, Yaozhenghang Ma and Hua Wu","doi":"10.1039/D4TC03941F","DOIUrl":null,"url":null,"abstract":"<p >The two-dimensional (2D) Cu(CrSe<small><sub>2</sub></small>)<small><sub>2</sub></small> monolayer stands out for its combined ferromagnetic (FM), ferroelectric (FE), and metallic properties, marking itself as a prominent 2D multiferroic metal. This work studies those properties and the relevant physics, using density functional calculations, Monte Carlo simulations, and <em>ab initio</em> molecular dynamics. Our results show that Cu(CrSe<small><sub>2</sub></small>)<small><sub>2</sub></small> monolayer is in the Cr<small><sup>3+</sup></small> t<small><sup>3</sup></small><small><sub>2g</sub></small> state with <em>S</em> = 3/2 and Cu<small><sup>1+</sup></small> 3d<small><sup>10</sup></small> with <em>S</em> = 0. A ligand hole in the Se 4p orbitals gives rise to metallic behavior and enhances the FM coupling between the local Cr<small><sup>3+</sup></small><em>S</em> = 3/2 spins. The observed in-plane magnetic anisotropy primarily arises from exchange anisotropy, which is associated with the Cr–Se–Cr itinerant ferromagnetism. In contrast, both single-ion anisotropy and shape magnetic anisotropy contribute negligibly. The Dzyaloshinskii–Moriya interaction is also quite weak, only about 3% of the intralayer exchange parameters. Our Monte Carlo simulations show a FM Curie temperature (<em>T</em><small><sub>C</sub></small>) of 190 K. Moreover, the monolayer exhibits a vertical FE polarization of 1.79 pC m<small><sup>−1</sup></small> and a FE polarization switching barrier of 182 meV f.u.<small><sup>−1</sup></small>, and the FE state remains stable above room temperature as shown by <em>ab initio</em> molecular dynamics simulations. Furthermore, a magnetoelectric coupling is partially manifested by a magnetization rotation from in-plane to out-of-plane associated with a FE-to-paraelectric transition. The magnetization rotation can also be induced by either hole or electron doping, and the hole doping increases the <em>T</em><small><sub>C</sub></small> up to 238 K. In addition, tensile strain reduces the FE polarization but enhances <em>T</em><small><sub>C</sub></small> to 290 K, while a compressive strain gives an opposite effect. Therefore, the multiferroic metallic Cu(CrSe<small><sub>2</sub></small>)<small><sub>2</sub></small> monolayer may be explored for advanced multifunctional electronic devices.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 9","pages":" 4549-4556"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiferroic metallic monolayer Cu(CrSe2)2†\",\"authors\":\"Ke Yang, Yuxuan Zhou, Yaozhenghang Ma and Hua Wu\",\"doi\":\"10.1039/D4TC03941F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The two-dimensional (2D) Cu(CrSe<small><sub>2</sub></small>)<small><sub>2</sub></small> monolayer stands out for its combined ferromagnetic (FM), ferroelectric (FE), and metallic properties, marking itself as a prominent 2D multiferroic metal. This work studies those properties and the relevant physics, using density functional calculations, Monte Carlo simulations, and <em>ab initio</em> molecular dynamics. Our results show that Cu(CrSe<small><sub>2</sub></small>)<small><sub>2</sub></small> monolayer is in the Cr<small><sup>3+</sup></small> t<small><sup>3</sup></small><small><sub>2g</sub></small> state with <em>S</em> = 3/2 and Cu<small><sup>1+</sup></small> 3d<small><sup>10</sup></small> with <em>S</em> = 0. A ligand hole in the Se 4p orbitals gives rise to metallic behavior and enhances the FM coupling between the local Cr<small><sup>3+</sup></small><em>S</em> = 3/2 spins. The observed in-plane magnetic anisotropy primarily arises from exchange anisotropy, which is associated with the Cr–Se–Cr itinerant ferromagnetism. In contrast, both single-ion anisotropy and shape magnetic anisotropy contribute negligibly. The Dzyaloshinskii–Moriya interaction is also quite weak, only about 3% of the intralayer exchange parameters. Our Monte Carlo simulations show a FM Curie temperature (<em>T</em><small><sub>C</sub></small>) of 190 K. Moreover, the monolayer exhibits a vertical FE polarization of 1.79 pC m<small><sup>−1</sup></small> and a FE polarization switching barrier of 182 meV f.u.<small><sup>−1</sup></small>, and the FE state remains stable above room temperature as shown by <em>ab initio</em> molecular dynamics simulations. Furthermore, a magnetoelectric coupling is partially manifested by a magnetization rotation from in-plane to out-of-plane associated with a FE-to-paraelectric transition. The magnetization rotation can also be induced by either hole or electron doping, and the hole doping increases the <em>T</em><small><sub>C</sub></small> up to 238 K. In addition, tensile strain reduces the FE polarization but enhances <em>T</em><small><sub>C</sub></small> to 290 K, while a compressive strain gives an opposite effect. Therefore, the multiferroic metallic Cu(CrSe<small><sub>2</sub></small>)<small><sub>2</sub></small> monolayer may be explored for advanced multifunctional electronic devices.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 9\",\"pages\":\" 4549-4556\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03941f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03941f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D) Cu(CrSe2)2单层以其铁磁性(FM)、铁电性(FE)和金属性质的结合而突出,标志着它本身是一种突出的二维多铁性金属。这项工作研究这些性质和相关的物理,使用密度泛函计算,蒙特卡罗模拟,从头算分子动力学。结果表明,Cu(CrSe2)2单分子层在S = 3/2时处于Cr3+ t32g态,在S = 0时处于Cu1+ 3d10态。s4p轨道上的配体空穴引起了金属行为,并增强了局部Cr3+S = 3/2自旋之间的FM耦合。观察到的面内磁各向异性主要来自于交换各向异性,这与Cr-Se-Cr的流动铁磁性有关。相比之下,单离子各向异性和形状磁各向异性的贡献可以忽略不计。Dzyaloshinskii-Moriya相互作用也很弱,仅占层内交换参数的3%左右。我们的蒙特卡罗模拟显示FM居里温度(TC)为190 K。此外,从头算分子动力学模拟表明,该单层膜的垂直FE极化为1.79 pC m−1,FE极化开关势垒为182 meV f.u−1,并且在室温以上FE态保持稳定。此外,磁电耦合部分表现为与fe到准电跃迁相关的从面内到面外的磁化旋转。空穴和电子掺杂均可诱导磁化旋转,空穴掺杂可使TC升高至238 K。此外,拉伸应变降低了FE极化,但提高了TC至290 K,而压缩应变则起到相反的作用。因此,多铁金属Cu(CrSe2)2单层材料可用于先进的多功能电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiferroic metallic monolayer Cu(CrSe2)2†

Multiferroic metallic monolayer Cu(CrSe2)2†

The two-dimensional (2D) Cu(CrSe2)2 monolayer stands out for its combined ferromagnetic (FM), ferroelectric (FE), and metallic properties, marking itself as a prominent 2D multiferroic metal. This work studies those properties and the relevant physics, using density functional calculations, Monte Carlo simulations, and ab initio molecular dynamics. Our results show that Cu(CrSe2)2 monolayer is in the Cr3+ t32g state with S = 3/2 and Cu1+ 3d10 with S = 0. A ligand hole in the Se 4p orbitals gives rise to metallic behavior and enhances the FM coupling between the local Cr3+S = 3/2 spins. The observed in-plane magnetic anisotropy primarily arises from exchange anisotropy, which is associated with the Cr–Se–Cr itinerant ferromagnetism. In contrast, both single-ion anisotropy and shape magnetic anisotropy contribute negligibly. The Dzyaloshinskii–Moriya interaction is also quite weak, only about 3% of the intralayer exchange parameters. Our Monte Carlo simulations show a FM Curie temperature (TC) of 190 K. Moreover, the monolayer exhibits a vertical FE polarization of 1.79 pC m−1 and a FE polarization switching barrier of 182 meV f.u.−1, and the FE state remains stable above room temperature as shown by ab initio molecular dynamics simulations. Furthermore, a magnetoelectric coupling is partially manifested by a magnetization rotation from in-plane to out-of-plane associated with a FE-to-paraelectric transition. The magnetization rotation can also be induced by either hole or electron doping, and the hole doping increases the TC up to 238 K. In addition, tensile strain reduces the FE polarization but enhances TC to 290 K, while a compressive strain gives an opposite effect. Therefore, the multiferroic metallic Cu(CrSe2)2 monolayer may be explored for advanced multifunctional electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信