基于双调制的可重构多波段共面嵌套电磁感应透明超材料

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Jingjing Liang;Bin Li;Li Zhang;Shuhui Yang;Yuxuan Yuan;Rui Meng;Chenyin Yu;Kaili Huo;Yahui Hou;Zihao Fu
{"title":"基于双调制的可重构多波段共面嵌套电磁感应透明超材料","authors":"Jingjing Liang;Bin Li;Li Zhang;Shuhui Yang;Yuxuan Yuan;Rui Meng;Chenyin Yu;Kaili Huo;Yahui Hou;Zihao Fu","doi":"10.1109/TPS.2025.3533550","DOIUrl":null,"url":null,"abstract":"A multiband co-planar nested electromagnetically induced transparency (EIT) metamaterial based on dual modulation of vanadium dioxide (VO2) and graphene is proposed. The single-layer structure comprises a pair of metallic T-type resonators (TRSs), a pair of VO2-TRS with equal size, and a centrally positioned crossed graphene layer. These three layers of TRS with varying sizes undergo bight-bight coupling, enabling efficient modulation of the three-band EIT-like effect through the combination of VO2 and graphene. Moreover, three distinct modulation mechanisms in the hybrid EIT metamaterials are revealed: 1) the number of EIT windows decreases as the surface temperature falls in the VO2-TRS integration; 2) the centrosymmetry is broken during the I-shaped graphene integration process, allowing dynamic control of EIT switching and transmission strength under different polarization incidences; 3) redistribution of the surface electric field in the crossed graphene layer. The three EIT windows close one by one as the Fermi level increases with a maximum modulation depth (MD) of 89.4%. The designed structure achieves a maximum transmission coefficient of 0.95 and a maximum group delay of 27.6 ps in the terahertz (THz) band, indicating excellent transmission performance and slow-light characteristics. This work demonstrates the potential application of multiband THz slow-light devices and modulators.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"351-360"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable Multiband Co-Planar Nested Electromagnetically Induced Transparent Metamaterial Based on Dual Modulation\",\"authors\":\"Jingjing Liang;Bin Li;Li Zhang;Shuhui Yang;Yuxuan Yuan;Rui Meng;Chenyin Yu;Kaili Huo;Yahui Hou;Zihao Fu\",\"doi\":\"10.1109/TPS.2025.3533550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multiband co-planar nested electromagnetically induced transparency (EIT) metamaterial based on dual modulation of vanadium dioxide (VO2) and graphene is proposed. The single-layer structure comprises a pair of metallic T-type resonators (TRSs), a pair of VO2-TRS with equal size, and a centrally positioned crossed graphene layer. These three layers of TRS with varying sizes undergo bight-bight coupling, enabling efficient modulation of the three-band EIT-like effect through the combination of VO2 and graphene. Moreover, three distinct modulation mechanisms in the hybrid EIT metamaterials are revealed: 1) the number of EIT windows decreases as the surface temperature falls in the VO2-TRS integration; 2) the centrosymmetry is broken during the I-shaped graphene integration process, allowing dynamic control of EIT switching and transmission strength under different polarization incidences; 3) redistribution of the surface electric field in the crossed graphene layer. The three EIT windows close one by one as the Fermi level increases with a maximum modulation depth (MD) of 89.4%. The designed structure achieves a maximum transmission coefficient of 0.95 and a maximum group delay of 27.6 ps in the terahertz (THz) band, indicating excellent transmission performance and slow-light characteristics. This work demonstrates the potential application of multiband THz slow-light devices and modulators.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"53 2\",\"pages\":\"351-360\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10875030/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10875030/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于二氧化钒(VO2)和石墨烯双调制的多波段共面嵌套电磁感应透明(EIT)超材料。单层结构包括一对金属t型谐振器(trs),一对大小相等的VO2-TRS,以及位于中心位置的交叉石墨烯层。这三层不同尺寸的TRS进行了亮-亮耦合,通过VO2和石墨烯的结合实现了三波段类似eit效应的有效调制。此外,还揭示了混合EIT超材料的三种不同的调制机制:1)在VO2-TRS集成过程中,EIT窗口数量随着表面温度的降低而减少;2)在i型石墨烯集成过程中,中心对称性被打破,可以动态控制不同极化入射下的EIT开关和透射强度;3)交叉石墨烯层表面电场的再分布。随着费米能级的增加,三个EIT窗口依次关闭,最大调制深度(MD)为89.4%。设计的结构在太赫兹(THz)波段的最大传输系数为0.95,最大群延迟为27.6 ps,具有良好的传输性能和慢光特性。这项工作证明了多波段太赫兹慢光器件和调制器的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable Multiband Co-Planar Nested Electromagnetically Induced Transparent Metamaterial Based on Dual Modulation
A multiband co-planar nested electromagnetically induced transparency (EIT) metamaterial based on dual modulation of vanadium dioxide (VO2) and graphene is proposed. The single-layer structure comprises a pair of metallic T-type resonators (TRSs), a pair of VO2-TRS with equal size, and a centrally positioned crossed graphene layer. These three layers of TRS with varying sizes undergo bight-bight coupling, enabling efficient modulation of the three-band EIT-like effect through the combination of VO2 and graphene. Moreover, three distinct modulation mechanisms in the hybrid EIT metamaterials are revealed: 1) the number of EIT windows decreases as the surface temperature falls in the VO2-TRS integration; 2) the centrosymmetry is broken during the I-shaped graphene integration process, allowing dynamic control of EIT switching and transmission strength under different polarization incidences; 3) redistribution of the surface electric field in the crossed graphene layer. The three EIT windows close one by one as the Fermi level increases with a maximum modulation depth (MD) of 89.4%. The designed structure achieves a maximum transmission coefficient of 0.95 and a maximum group delay of 27.6 ps in the terahertz (THz) band, indicating excellent transmission performance and slow-light characteristics. This work demonstrates the potential application of multiband THz slow-light devices and modulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信