利用李码优化掌顶等离子体聚焦装置的中子产率

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
M. I. Nayeem;S. Biswas;M. K. Islam;M. Akel;S. Lee;M. A. Malek
{"title":"利用李码优化掌顶等离子体聚焦装置的中子产率","authors":"M. I. Nayeem;S. Biswas;M. K. Islam;M. Akel;S. Lee;M. A. Malek","doi":"10.1109/TPS.2025.3525982","DOIUrl":null,"url":null,"abstract":"A palm top plasma focus (PF) device (100 J, 5 kV, 59 kA, ~1.5 kg) with tapered anode was demonstrated in a study earlier by (Rout et al., 2013). To simulate that device, we use the Lee code (RADPFV5.16). The computed current trace is fit to Rout’s measured current trace at 2.25 Torr deuterium (<inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>) gas. The best-fit values of the model parameters are found as <inline-formula> <tex-math>${f}_{m} = 0.11, f_{c} = 0.73, f_{\\text {mr}} = 0.245, f_{\\text {cr}} = 0.78$ </tex-math></inline-formula>. Having fixed these parameters, the computed neutron yields (<inline-formula> <tex-math>${Y} _{n}$ </tex-math></inline-formula>) <inline-formula> <tex-math>$6.12\\times 10^{4}, 1.72\\times 10^{4}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$0.24\\times 10^{4}$ </tex-math></inline-formula> neutrons/shot are found to be comparable with the measured values (<inline-formula> <tex-math>$5.2~\\pm ~0.8$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula>, (<inline-formula> <tex-math>$2~\\pm ~0.5$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula>, and (<inline-formula> <tex-math>$0.2~\\pm ~0.1$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula> at (2.25 Torr, 5 kV), (1.875 Torr, 4 kV), and (1.5 Torr, 3 kV), respectively. The remarkable agreement shows the reliability of the code. Numerical studies are extended with anode length and taper size optimization, corresponding to the pressure range (2–3.5) Torr of <inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>. The optimum <inline-formula> <tex-math>${Y} _{n}$ </tex-math></inline-formula> (<inline-formula> <tex-math>$1.56\\times 10^{5}$ </tex-math></inline-formula>) is found at 2.55 Torr which is three times greater than the highest measured value [(<inline-formula> <tex-math>$5.2~\\pm ~0.8$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\times 10^{4}$ </tex-math></inline-formula>] at 2.25 Torr, 5 kV. At this optimized configuration, using deuterium-tritium (1:1) as the operating gas, the neutron yield is computed to increase to <inline-formula> <tex-math>$10^{7}$ </tex-math></inline-formula>, about 100 times greater than the computed yield with <inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>. In addition, we found that reducing the stray inductance <inline-formula> <tex-math>${L} _{0}$ </tex-math></inline-formula> of the device from its present value of 30 to 16 nH, the D-D neutron yield is increased from computed value of <inline-formula> <tex-math>$1.56\\times 10^{5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$2.58\\times 10^{5}$ </tex-math></inline-formula>.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"293-300"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutron Yield Optimization From a Palm Top Plasma Focus Device Using Lee Code\",\"authors\":\"M. I. Nayeem;S. Biswas;M. K. Islam;M. Akel;S. Lee;M. A. Malek\",\"doi\":\"10.1109/TPS.2025.3525982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A palm top plasma focus (PF) device (100 J, 5 kV, 59 kA, ~1.5 kg) with tapered anode was demonstrated in a study earlier by (Rout et al., 2013). To simulate that device, we use the Lee code (RADPFV5.16). The computed current trace is fit to Rout’s measured current trace at 2.25 Torr deuterium (<inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>) gas. The best-fit values of the model parameters are found as <inline-formula> <tex-math>${f}_{m} = 0.11, f_{c} = 0.73, f_{\\\\text {mr}} = 0.245, f_{\\\\text {cr}} = 0.78$ </tex-math></inline-formula>. Having fixed these parameters, the computed neutron yields (<inline-formula> <tex-math>${Y} _{n}$ </tex-math></inline-formula>) <inline-formula> <tex-math>$6.12\\\\times 10^{4}, 1.72\\\\times 10^{4}$ </tex-math></inline-formula>, and <inline-formula> <tex-math>$0.24\\\\times 10^{4}$ </tex-math></inline-formula> neutrons/shot are found to be comparable with the measured values (<inline-formula> <tex-math>$5.2~\\\\pm ~0.8$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\\\times 10^{4}$ </tex-math></inline-formula>, (<inline-formula> <tex-math>$2~\\\\pm ~0.5$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\\\times 10^{4}$ </tex-math></inline-formula>, and (<inline-formula> <tex-math>$0.2~\\\\pm ~0.1$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\\\times 10^{4}$ </tex-math></inline-formula> at (2.25 Torr, 5 kV), (1.875 Torr, 4 kV), and (1.5 Torr, 3 kV), respectively. The remarkable agreement shows the reliability of the code. Numerical studies are extended with anode length and taper size optimization, corresponding to the pressure range (2–3.5) Torr of <inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>. The optimum <inline-formula> <tex-math>${Y} _{n}$ </tex-math></inline-formula> (<inline-formula> <tex-math>$1.56\\\\times 10^{5}$ </tex-math></inline-formula>) is found at 2.55 Torr which is three times greater than the highest measured value [(<inline-formula> <tex-math>$5.2~\\\\pm ~0.8$ </tex-math></inline-formula>) <inline-formula> <tex-math>$\\\\times 10^{4}$ </tex-math></inline-formula>] at 2.25 Torr, 5 kV. At this optimized configuration, using deuterium-tritium (1:1) as the operating gas, the neutron yield is computed to increase to <inline-formula> <tex-math>$10^{7}$ </tex-math></inline-formula>, about 100 times greater than the computed yield with <inline-formula> <tex-math>${D} _{2}$ </tex-math></inline-formula>. In addition, we found that reducing the stray inductance <inline-formula> <tex-math>${L} _{0}$ </tex-math></inline-formula> of the device from its present value of 30 to 16 nH, the D-D neutron yield is increased from computed value of <inline-formula> <tex-math>$1.56\\\\times 10^{5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$2.58\\\\times 10^{5}$ </tex-math></inline-formula>.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"53 2\",\"pages\":\"293-300\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856798/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10856798/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

(Rout et al., 2013)在之前的一项研究中展示了一种具有锥形阳极的手掌顶等离子体聚焦(PF)装置(100 J, 5 kV, 59 kA, ~1.5 kg)。为了模拟该设备,我们使用Lee代码(RADPFV5.16)。计算的电流轨迹与Rout在2.25托氘(${D} _{2}$)气体下的实测电流轨迹吻合。模型参数的最佳拟合值为${f}_{m} = 0.11, f_{c} = 0.73, f_{\text {mr}} = 0.245, f_{\text {cr}} = 0.78$。确定了这些参数后,计算出的中子产率(${Y} _{n}$) $6.12\乘以10^{4},$ 1.72\乘以10^{4}$和$0.24\乘以10^{4}$中子/次,分别与测量值($5.2~\pm ~0.8$) $\乘以10^{4}$,($2~\pm ~0.5$) $\乘以10^{4}$和($0.2~\pm ~0.1$) $\乘以10^{4}$在(2.25 Torr, 5 kV), (1.875 Torr, 4 kV)和(1.5 Torr, 3 kV)相当。这种显著的一致性表明了代码的可靠性。数值研究扩展了阳极长度和锥度尺寸的优化,对应于${D} _{2}$的压力范围(2 - 3.5)Torr。最佳的${Y} _{n}$ ($1.56\ × 10^{5}$)是在2.25 Torr, 5 kV时最高测量值[($5.2~\pm ~0.8$) $\ × 10^{4}$]的三倍。在这种优化配置下,使用氘-氚(1:1)作为操作气体,计算出的中子产率增加到$10^{7}$,大约是${D} _{2}$计算出的产率的100倍。此外,我们发现,将器件的杂散电感${L} _{0}$从其现值30降低到16 nH, D-D中子产额从计算值$1.56\ × 10^{5}$增加到$2.58\ × 10^{5}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutron Yield Optimization From a Palm Top Plasma Focus Device Using Lee Code
A palm top plasma focus (PF) device (100 J, 5 kV, 59 kA, ~1.5 kg) with tapered anode was demonstrated in a study earlier by (Rout et al., 2013). To simulate that device, we use the Lee code (RADPFV5.16). The computed current trace is fit to Rout’s measured current trace at 2.25 Torr deuterium ( ${D} _{2}$ ) gas. The best-fit values of the model parameters are found as ${f}_{m} = 0.11, f_{c} = 0.73, f_{\text {mr}} = 0.245, f_{\text {cr}} = 0.78$ . Having fixed these parameters, the computed neutron yields ( ${Y} _{n}$ ) $6.12\times 10^{4}, 1.72\times 10^{4}$ , and $0.24\times 10^{4}$ neutrons/shot are found to be comparable with the measured values ( $5.2~\pm ~0.8$ ) $\times 10^{4}$ , ( $2~\pm ~0.5$ ) $\times 10^{4}$ , and ( $0.2~\pm ~0.1$ ) $\times 10^{4}$ at (2.25 Torr, 5 kV), (1.875 Torr, 4 kV), and (1.5 Torr, 3 kV), respectively. The remarkable agreement shows the reliability of the code. Numerical studies are extended with anode length and taper size optimization, corresponding to the pressure range (2–3.5) Torr of ${D} _{2}$ . The optimum ${Y} _{n}$ ( $1.56\times 10^{5}$ ) is found at 2.55 Torr which is three times greater than the highest measured value [( $5.2~\pm ~0.8$ ) $\times 10^{4}$ ] at 2.25 Torr, 5 kV. At this optimized configuration, using deuterium-tritium (1:1) as the operating gas, the neutron yield is computed to increase to $10^{7}$ , about 100 times greater than the computed yield with ${D} _{2}$ . In addition, we found that reducing the stray inductance ${L} _{0}$ of the device from its present value of 30 to 16 nH, the D-D neutron yield is increased from computed value of $1.56\times 10^{5}$ to $2.58\times 10^{5}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信