用于无线可穿戴应用的喷涂GNP-PDMS柔性贴片天线传感器

Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma
{"title":"用于无线可穿戴应用的喷涂GNP-PDMS柔性贴片天线传感器","authors":"Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma","doi":"10.1109/TMAT.2025.3539249","DOIUrl":null,"url":null,"abstract":"This paper presents the synthesis and performance of a novel flexible patch antenna sensor based on graphene nanoplatelets (GNP) material designed to operate at the 5.8 GHz frequency, targeting wearable applications. The fabrication process employed in this chapter involved a simple yet effective spray coating method, utilizing a GNP dispersion applied with a spray gun to form a rectangular patch with a full ground plane on the PDMS substrate. This method offers the advantages of being cost-effective and scalable, making it suitable for large-scale production. The antenna's performance as a sensor was evaluated by subjecting it to different bending scenarios, mimicking both compressive (positive bending) and tensile (negative bending) strains. The resulting shifts in resonant frequency under these conditions offered important information about the sensor's sensitivity. The practical applicability of the antenna sensor was demonstrated through human limb motion detection experiments, specifically tracking wrist movements. The sensor's ability to detect upward and downward wrist motions through variations in the normalized frequency output highlights its potential for real-world wearable applications. In addition to its promising performance, the operation of this antenna within the Industrial/Scientific/Medical (ISM) band at 5.8 GHz opens up a range of potential applications.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spray Coated GNP-PDMS Flexible Patch Antenna-Sensor for Wireless Wearable Applications\",\"authors\":\"Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma\",\"doi\":\"10.1109/TMAT.2025.3539249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the synthesis and performance of a novel flexible patch antenna sensor based on graphene nanoplatelets (GNP) material designed to operate at the 5.8 GHz frequency, targeting wearable applications. The fabrication process employed in this chapter involved a simple yet effective spray coating method, utilizing a GNP dispersion applied with a spray gun to form a rectangular patch with a full ground plane on the PDMS substrate. This method offers the advantages of being cost-effective and scalable, making it suitable for large-scale production. The antenna's performance as a sensor was evaluated by subjecting it to different bending scenarios, mimicking both compressive (positive bending) and tensile (negative bending) strains. The resulting shifts in resonant frequency under these conditions offered important information about the sensor's sensitivity. The practical applicability of the antenna sensor was demonstrated through human limb motion detection experiments, specifically tracking wrist movements. The sensor's ability to detect upward and downward wrist motions through variations in the normalized frequency output highlights its potential for real-world wearable applications. In addition to its promising performance, the operation of this antenna within the Industrial/Scientific/Medical (ISM) band at 5.8 GHz opens up a range of potential applications.\",\"PeriodicalId\":100642,\"journal\":{\"name\":\"IEEE Transactions on Materials for Electron Devices\",\"volume\":\"2 \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Materials for Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10877762/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Materials for Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10877762/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于石墨烯纳米片(GNP)材料的新型柔性贴片天线传感器的合成和性能,设计工作频率为5.8 GHz,目标是可穿戴应用。本章中采用的制造工艺涉及一种简单而有效的喷涂方法,利用喷枪应用GNP分散液在PDMS基板上形成具有完整地平面的矩形贴片。该方法具有成本效益高、可扩展性强等优点,适合大规模生产。通过将天线置于不同的弯曲情况下,模拟压缩(正弯曲)和拉伸(负弯曲)应变,评估了天线作为传感器的性能。在这些条件下产生的谐振频率的变化提供了有关传感器灵敏度的重要信息。通过人体肢体运动检测实验,特别是腕部运动跟踪实验,验证了天线传感器的实用性。该传感器能够通过归一化频率输出的变化来检测手腕上下运动,这凸显了其在现实世界中可穿戴应用的潜力。除了具有良好的性能外,该天线在5.8 GHz的工业/科学/医疗(ISM)频段内的运行开辟了一系列潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spray Coated GNP-PDMS Flexible Patch Antenna-Sensor for Wireless Wearable Applications
This paper presents the synthesis and performance of a novel flexible patch antenna sensor based on graphene nanoplatelets (GNP) material designed to operate at the 5.8 GHz frequency, targeting wearable applications. The fabrication process employed in this chapter involved a simple yet effective spray coating method, utilizing a GNP dispersion applied with a spray gun to form a rectangular patch with a full ground plane on the PDMS substrate. This method offers the advantages of being cost-effective and scalable, making it suitable for large-scale production. The antenna's performance as a sensor was evaluated by subjecting it to different bending scenarios, mimicking both compressive (positive bending) and tensile (negative bending) strains. The resulting shifts in resonant frequency under these conditions offered important information about the sensor's sensitivity. The practical applicability of the antenna sensor was demonstrated through human limb motion detection experiments, specifically tracking wrist movements. The sensor's ability to detect upward and downward wrist motions through variations in the normalized frequency output highlights its potential for real-world wearable applications. In addition to its promising performance, the operation of this antenna within the Industrial/Scientific/Medical (ISM) band at 5.8 GHz opens up a range of potential applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信