揭示铁电AlScN薄膜的疲劳机制:氧渗透的作用

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruiqing Wang;Jiuren Zhou;Danyang Yao;Siying Zheng;Bochang Li;Xiaoxi Li;Yan Liu;Yue Hao;Genquan Han
{"title":"揭示铁电AlScN薄膜的疲劳机制:氧渗透的作用","authors":"Ruiqing Wang;Jiuren Zhou;Danyang Yao;Siying Zheng;Bochang Li;Xiaoxi Li;Yan Liu;Yue Hao;Genquan Han","doi":"10.1109/LED.2024.3522947","DOIUrl":null,"url":null,"abstract":"Confronting the endurance challenge in wurtzite ferroelectrics, this study provides a pioneering microscopic investigation into the fatigue mechanisms of AlScN films, identifying oxygen infiltration as the key factor. Utilizing transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS), we dynamically tracked the redistribution of oxygen elements within Al0.65 Sc0.35N films during electrical stress cycling. Results reveal that prolonged stress cycling drives oxygen penetration along the grain boundaries into the bulk, leading to fatigue. Importantly, removing the oxygen source effectively suppresses oxygen infiltration, achieving an impressive endurance of <inline-formula> <tex-math>$4.6 \\times 10^{7}$ </tex-math></inline-formula> cycles under a <inline-formula> <tex-math>$\\mathbf {P}_{\\mathbf {r}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$114.6~\\mu $ </tex-math></inline-formula>C/cm2. These insights are pivotal for developing next-generation ferroelectric memory devices with superior endurance properties.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 3","pages":"381-384"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Fatigue Mechanisms in Ferroelectric AlScN Films: The Role of Oxygen Infiltration\",\"authors\":\"Ruiqing Wang;Jiuren Zhou;Danyang Yao;Siying Zheng;Bochang Li;Xiaoxi Li;Yan Liu;Yue Hao;Genquan Han\",\"doi\":\"10.1109/LED.2024.3522947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Confronting the endurance challenge in wurtzite ferroelectrics, this study provides a pioneering microscopic investigation into the fatigue mechanisms of AlScN films, identifying oxygen infiltration as the key factor. Utilizing transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS), we dynamically tracked the redistribution of oxygen elements within Al0.65 Sc0.35N films during electrical stress cycling. Results reveal that prolonged stress cycling drives oxygen penetration along the grain boundaries into the bulk, leading to fatigue. Importantly, removing the oxygen source effectively suppresses oxygen infiltration, achieving an impressive endurance of <inline-formula> <tex-math>$4.6 \\\\times 10^{7}$ </tex-math></inline-formula> cycles under a <inline-formula> <tex-math>$\\\\mathbf {P}_{\\\\mathbf {r}}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$114.6~\\\\mu $ </tex-math></inline-formula>C/cm2. These insights are pivotal for developing next-generation ferroelectric memory devices with superior endurance properties.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 3\",\"pages\":\"381-384\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833916/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10833916/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

面对纤锌矿铁电体的耐久性挑战,本研究对AlScN薄膜的疲劳机制进行了开创性的微观研究,并确定了氧渗透是关键因素。利用透射电子显微镜(TEM)和能量色散光谱(EDS),我们动态跟踪了电应力循环过程中Al0.65 Sc0.35N薄膜中氧元素的重新分布。结果表明,长时间的应力循环导致氧沿晶界渗透到体中,导致疲劳。重要的是,去除氧源有效地抑制了氧气的渗入,在$ $ mathbf {P}_{\mathbf {r}}$ $114.6~\mu $ C/cm2下,达到了令人印象深刻的$4.6 \ × 10^{7}$循环。这些见解对于开发具有卓越耐用性能的下一代铁电存储器件至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling Fatigue Mechanisms in Ferroelectric AlScN Films: The Role of Oxygen Infiltration
Confronting the endurance challenge in wurtzite ferroelectrics, this study provides a pioneering microscopic investigation into the fatigue mechanisms of AlScN films, identifying oxygen infiltration as the key factor. Utilizing transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS), we dynamically tracked the redistribution of oxygen elements within Al0.65 Sc0.35N films during electrical stress cycling. Results reveal that prolonged stress cycling drives oxygen penetration along the grain boundaries into the bulk, leading to fatigue. Importantly, removing the oxygen source effectively suppresses oxygen infiltration, achieving an impressive endurance of $4.6 \times 10^{7}$ cycles under a $\mathbf {P}_{\mathbf {r}}$ of $114.6~\mu $ C/cm2. These insights are pivotal for developing next-generation ferroelectric memory devices with superior endurance properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信