多层视觉代谢组学分析框架,加强对枸杞功能成分的探索

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Shiqi Chen , Yifan Li , Huixia Zhang , Jingguang Li , Liu Yang , Qiqi Wang , Shuai Zhang , Pengjie Luo , Hongping Wang , Haiyang Jiang
{"title":"多层视觉代谢组学分析框架,加强对枸杞功能成分的探索","authors":"Shiqi Chen ,&nbsp;Yifan Li ,&nbsp;Huixia Zhang ,&nbsp;Jingguang Li ,&nbsp;Liu Yang ,&nbsp;Qiqi Wang ,&nbsp;Shuai Zhang ,&nbsp;Pengjie Luo ,&nbsp;Hongping Wang ,&nbsp;Haiyang Jiang","doi":"10.1016/j.foodchem.2025.143583","DOIUrl":null,"url":null,"abstract":"<div><div>Wolfberry, regarded as a nutritious fruit, has garnered significant attention in the food industry due to potential health benefits. However, the tissue-specific distribution and dynamic accumulation patterns of nutritional metabolites such as flavonoids are still unclear. In this study, a novel spatial metabolomics framework was developed, incorporating instrumental optimization, metabolite identification, molecular network analysis, metabolic pathway mapping, and machine learning-based imaging. Using DESI-MSI, this approach enabled rapid, non-destructive, in situ analysis of wolfberry metabolites with enhanced sensitivity and spatial resolution. Detailed insights into chemical and spatial changes during ripening were obtained, with a focus on flavonoids. The visualization of the flavonoid biosynthetic pathway highlighted the impact of C-3 hydroxylation on flavonoid redistribution. Furthermore, a classification model achieved a prediction accuracy exceeding 99 %, consistent with metabolic network analyses. This framework provides a powerful tool for plant metabolomics, facilitating the exploration of functional components and metabolic pathways.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"477 ","pages":"Article 143583"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry\",\"authors\":\"Shiqi Chen ,&nbsp;Yifan Li ,&nbsp;Huixia Zhang ,&nbsp;Jingguang Li ,&nbsp;Liu Yang ,&nbsp;Qiqi Wang ,&nbsp;Shuai Zhang ,&nbsp;Pengjie Luo ,&nbsp;Hongping Wang ,&nbsp;Haiyang Jiang\",\"doi\":\"10.1016/j.foodchem.2025.143583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wolfberry, regarded as a nutritious fruit, has garnered significant attention in the food industry due to potential health benefits. However, the tissue-specific distribution and dynamic accumulation patterns of nutritional metabolites such as flavonoids are still unclear. In this study, a novel spatial metabolomics framework was developed, incorporating instrumental optimization, metabolite identification, molecular network analysis, metabolic pathway mapping, and machine learning-based imaging. Using DESI-MSI, this approach enabled rapid, non-destructive, in situ analysis of wolfberry metabolites with enhanced sensitivity and spatial resolution. Detailed insights into chemical and spatial changes during ripening were obtained, with a focus on flavonoids. The visualization of the flavonoid biosynthetic pathway highlighted the impact of C-3 hydroxylation on flavonoid redistribution. Furthermore, a classification model achieved a prediction accuracy exceeding 99 %, consistent with metabolic network analyses. This framework provides a powerful tool for plant metabolomics, facilitating the exploration of functional components and metabolic pathways.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"477 \",\"pages\":\"Article 143583\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625008349\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625008349","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

枸杞被认为是一种营养丰富的水果,由于其潜在的健康益处,在食品工业中引起了极大的关注。然而,黄酮类营养代谢产物的组织特异性分布和动态积累模式尚不清楚。在这项研究中,开发了一个新的空间代谢组学框架,包括仪器优化、代谢物鉴定、分子网络分析、代谢途径映射和基于机器学习的成像。使用DESI-MSI,该方法能够快速,非破坏性地原位分析枸杞代谢物,具有更高的灵敏度和空间分辨率。获得了成熟过程中化学和空间变化的详细见解,重点是黄酮类化合物。类黄酮生物合成途径的可视化强调了C-3羟基化对类黄酮再分布的影响。此外,分类模型的预测精度超过99 %,与代谢网络分析一致。该框架为植物代谢组学研究提供了强有力的工具,有助于探索植物的功能成分和代谢途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry

Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry

Multilayered visual metabolomics analysis framework for enhanced exploration of functional components in wolfberry
Wolfberry, regarded as a nutritious fruit, has garnered significant attention in the food industry due to potential health benefits. However, the tissue-specific distribution and dynamic accumulation patterns of nutritional metabolites such as flavonoids are still unclear. In this study, a novel spatial metabolomics framework was developed, incorporating instrumental optimization, metabolite identification, molecular network analysis, metabolic pathway mapping, and machine learning-based imaging. Using DESI-MSI, this approach enabled rapid, non-destructive, in situ analysis of wolfberry metabolites with enhanced sensitivity and spatial resolution. Detailed insights into chemical and spatial changes during ripening were obtained, with a focus on flavonoids. The visualization of the flavonoid biosynthetic pathway highlighted the impact of C-3 hydroxylation on flavonoid redistribution. Furthermore, a classification model achieved a prediction accuracy exceeding 99 %, consistent with metabolic network analyses. This framework provides a powerful tool for plant metabolomics, facilitating the exploration of functional components and metabolic pathways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信