用于神经形态模式识别和图像压缩的多功能突触忆阻器

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Sun, Siyuan Li, Xiaofei Dong, Fengxia Yang, Xiang Zhang, Jianbiao Chen, Xuqiang Zhang, Jiangtao Chen, Yun Zhao, Yan Li
{"title":"用于神经形态模式识别和图像压缩的多功能突触忆阻器","authors":"Hao Sun,&nbsp;Siyuan Li,&nbsp;Xiaofei Dong,&nbsp;Fengxia Yang,&nbsp;Xiang Zhang,&nbsp;Jianbiao Chen,&nbsp;Xuqiang Zhang,&nbsp;Jiangtao Chen,&nbsp;Yun Zhao,&nbsp;Yan Li","doi":"10.1016/j.mtphys.2025.101684","DOIUrl":null,"url":null,"abstract":"<div><div>A two-terminal artificial synaptic memristor capable of emulating the discrimination ability in human brain is an essential prerequisite for realizing neuromorphic computing architectures through straightforward crossbar array, however, it is still a challenge yet. Here, a multi-functional synaptic memristor is reported, based on bismuth oxybromide (BiOBr) nanosheets, in which enables advanced pattern-discriminating and image compression synaptic functionality. The device exhibits stable resistance switching with an On/Off ratio of ∼30.4 and pronounced electrically-induced synaptic plasticity. The device array can achieve a classification recognition accuracy of 70.98 % on CIFAR-10 dataset, significantly outperforming the 36.35 % accuracy obtained using traditional gradient descent algorithms. By encoding image pixel values into temporal pulse sequences, the device can enable high-precision image compression, maintaining 94.01 % classification accuracy on MNIST dataset with greatly reduced trainable parameters (from 13550 to 2630) and shortened training time (from 252 to 65 s). These findings suggest BiOBr nanosheets could facilitate efficient memristor-based artificial intelligence applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"52 ","pages":"Article 101684"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-functional synaptic memristor for neuromorphic pattern recognition and image compression\",\"authors\":\"Hao Sun,&nbsp;Siyuan Li,&nbsp;Xiaofei Dong,&nbsp;Fengxia Yang,&nbsp;Xiang Zhang,&nbsp;Jianbiao Chen,&nbsp;Xuqiang Zhang,&nbsp;Jiangtao Chen,&nbsp;Yun Zhao,&nbsp;Yan Li\",\"doi\":\"10.1016/j.mtphys.2025.101684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A two-terminal artificial synaptic memristor capable of emulating the discrimination ability in human brain is an essential prerequisite for realizing neuromorphic computing architectures through straightforward crossbar array, however, it is still a challenge yet. Here, a multi-functional synaptic memristor is reported, based on bismuth oxybromide (BiOBr) nanosheets, in which enables advanced pattern-discriminating and image compression synaptic functionality. The device exhibits stable resistance switching with an On/Off ratio of ∼30.4 and pronounced electrically-induced synaptic plasticity. The device array can achieve a classification recognition accuracy of 70.98 % on CIFAR-10 dataset, significantly outperforming the 36.35 % accuracy obtained using traditional gradient descent algorithms. By encoding image pixel values into temporal pulse sequences, the device can enable high-precision image compression, maintaining 94.01 % classification accuracy on MNIST dataset with greatly reduced trainable parameters (from 13550 to 2630) and shortened training time (from 252 to 65 s). These findings suggest BiOBr nanosheets could facilitate efficient memristor-based artificial intelligence applications.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"52 \",\"pages\":\"Article 101684\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000409\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000409","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

模拟人脑识别能力的双端人工突触忆阻器是通过交叉棒阵列实现神经形态计算架构的必要前提,但这仍然是一个挑战。本文报道了一种基于氧化溴化铋(BiOBr)纳米片的多功能突触忆阻器,它具有先进的模式识别和图像压缩突触功能。该器件具有稳定的电阻开关,开/关比为~ 30.4,并具有明显的电诱导突触可塑性。该阵列在CIFAR-10数据集上的分类识别准确率达到70.98%,显著优于传统梯度下降算法的36.35%准确率。通过将图像像素值编码为时间脉冲序列,该装置可以实现高精度图像压缩,在MNIST数据集上保持94.01%的分类准确率,大大减少了可训练参数(从13550到2630),缩短了训练时间(从252到65秒)。这些研究结果表明,BiOBr纳米片可以促进高效的基于忆阻器的人工智能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-functional synaptic memristor for neuromorphic pattern recognition and image compression
A two-terminal artificial synaptic memristor capable of emulating the discrimination ability in human brain is an essential prerequisite for realizing neuromorphic computing architectures through straightforward crossbar array, however, it is still a challenge yet. Here, a multi-functional synaptic memristor is reported, based on bismuth oxybromide (BiOBr) nanosheets, in which enables advanced pattern-discriminating and image compression synaptic functionality. The device exhibits stable resistance switching with an On/Off ratio of ∼30.4 and pronounced electrically-induced synaptic plasticity. The device array can achieve a classification recognition accuracy of 70.98 % on CIFAR-10 dataset, significantly outperforming the 36.35 % accuracy obtained using traditional gradient descent algorithms. By encoding image pixel values into temporal pulse sequences, the device can enable high-precision image compression, maintaining 94.01 % classification accuracy on MNIST dataset with greatly reduced trainable parameters (from 13550 to 2630) and shortened training time (from 252 to 65 s). These findings suggest BiOBr nanosheets could facilitate efficient memristor-based artificial intelligence applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信