Neal L Millar, Iain B McInnes, Frank Kolbinger, Friedrich Raulf, Moeed Akbar, Yufei Li, Nicolau Beckmann, Nathalie Accart, Olivier Leupin, Claudio Calonder, Matthias Schieker, Michaela Kneissel, Christian Bruns, Richard M Siegel, Eckhard Weber
{"title":"靶向IL-17A途径治疗早期肌腱病变。","authors":"Neal L Millar, Iain B McInnes, Frank Kolbinger, Friedrich Raulf, Moeed Akbar, Yufei Li, Nicolau Beckmann, Nathalie Accart, Olivier Leupin, Claudio Calonder, Matthias Schieker, Michaela Kneissel, Christian Bruns, Richard M Siegel, Eckhard Weber","doi":"10.1136/rmdopen-2024-004729","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Tendinopathy is a frequent clinical problem and represents an extraordinary health economic and socioeconomic burden with high unmet medical needs. Recent clinical evidence suggests blockade of interleukin 17A (IL-17A) for tendinopathy therapy. The present preclinical study elucidates the biological mechanisms of IL-17A pathway stimulation and blockade in tendinopathy.</p><p><strong>Methods: </strong>We explored whether IL-17A and other IL-17 family members are differentially expressed in biopsies of healthy, early-stage and late-stage tendinopathic human rotator cuff tendons using RT-qPCR. IL-17 pathway signature genes in healthy human tendon-derived cells were identified following IL-17A stimulation using AmpliSeq RNA. The molecular, structural and functional consequences of IL-17A pathway stimulation were explored in healthy human tendon-derived cells and in a rat tendon fascicle model ex vivo. The effects of IL-17A pathway blockade were investigated in a rat model of rotator cuff tendinopathy in vivo.</p><p><strong>Results: </strong>We provide evidence of differential expression of IL-17A mRNA (<i>IL17A</i>) versus other IL-17 family members in human rotator cuff early-stage tendinopathy. In human tendon-derived cells, stimulation with IL-17A induced the expression of the selected IL-17A pathway signature genes <i>NFKBIZ, ZC3H12A, CXCL1, IL6, MMP3</i>. Expression was inhibited by IL-17A blockade. In the rat ex vivo and in vivo models, IL-17A blockade alleviated inflammatory immune effector release, tendon structural degeneration, tendon inflammation and impaired tendon function.</p><p><strong>Conclusion: </strong>Our data provide evidence that IL-17A is a key contributor to the pathogenesis of tendinopathy by promoting tendon inflammation and degeneration and that IL-17A blockade may represent a potential therapy in early-stage tendinopathy.</p>","PeriodicalId":21396,"journal":{"name":"RMD Open","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting the IL-17A pathway for therapy in early-stage tendinopathy.\",\"authors\":\"Neal L Millar, Iain B McInnes, Frank Kolbinger, Friedrich Raulf, Moeed Akbar, Yufei Li, Nicolau Beckmann, Nathalie Accart, Olivier Leupin, Claudio Calonder, Matthias Schieker, Michaela Kneissel, Christian Bruns, Richard M Siegel, Eckhard Weber\",\"doi\":\"10.1136/rmdopen-2024-004729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Tendinopathy is a frequent clinical problem and represents an extraordinary health economic and socioeconomic burden with high unmet medical needs. Recent clinical evidence suggests blockade of interleukin 17A (IL-17A) for tendinopathy therapy. The present preclinical study elucidates the biological mechanisms of IL-17A pathway stimulation and blockade in tendinopathy.</p><p><strong>Methods: </strong>We explored whether IL-17A and other IL-17 family members are differentially expressed in biopsies of healthy, early-stage and late-stage tendinopathic human rotator cuff tendons using RT-qPCR. IL-17 pathway signature genes in healthy human tendon-derived cells were identified following IL-17A stimulation using AmpliSeq RNA. The molecular, structural and functional consequences of IL-17A pathway stimulation were explored in healthy human tendon-derived cells and in a rat tendon fascicle model ex vivo. The effects of IL-17A pathway blockade were investigated in a rat model of rotator cuff tendinopathy in vivo.</p><p><strong>Results: </strong>We provide evidence of differential expression of IL-17A mRNA (<i>IL17A</i>) versus other IL-17 family members in human rotator cuff early-stage tendinopathy. In human tendon-derived cells, stimulation with IL-17A induced the expression of the selected IL-17A pathway signature genes <i>NFKBIZ, ZC3H12A, CXCL1, IL6, MMP3</i>. Expression was inhibited by IL-17A blockade. In the rat ex vivo and in vivo models, IL-17A blockade alleviated inflammatory immune effector release, tendon structural degeneration, tendon inflammation and impaired tendon function.</p><p><strong>Conclusion: </strong>Our data provide evidence that IL-17A is a key contributor to the pathogenesis of tendinopathy by promoting tendon inflammation and degeneration and that IL-17A blockade may represent a potential therapy in early-stage tendinopathy.</p>\",\"PeriodicalId\":21396,\"journal\":{\"name\":\"RMD Open\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RMD Open\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/rmdopen-2024-004729\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RHEUMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RMD Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/rmdopen-2024-004729","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
Targeting the IL-17A pathway for therapy in early-stage tendinopathy.
Objectives: Tendinopathy is a frequent clinical problem and represents an extraordinary health economic and socioeconomic burden with high unmet medical needs. Recent clinical evidence suggests blockade of interleukin 17A (IL-17A) for tendinopathy therapy. The present preclinical study elucidates the biological mechanisms of IL-17A pathway stimulation and blockade in tendinopathy.
Methods: We explored whether IL-17A and other IL-17 family members are differentially expressed in biopsies of healthy, early-stage and late-stage tendinopathic human rotator cuff tendons using RT-qPCR. IL-17 pathway signature genes in healthy human tendon-derived cells were identified following IL-17A stimulation using AmpliSeq RNA. The molecular, structural and functional consequences of IL-17A pathway stimulation were explored in healthy human tendon-derived cells and in a rat tendon fascicle model ex vivo. The effects of IL-17A pathway blockade were investigated in a rat model of rotator cuff tendinopathy in vivo.
Results: We provide evidence of differential expression of IL-17A mRNA (IL17A) versus other IL-17 family members in human rotator cuff early-stage tendinopathy. In human tendon-derived cells, stimulation with IL-17A induced the expression of the selected IL-17A pathway signature genes NFKBIZ, ZC3H12A, CXCL1, IL6, MMP3. Expression was inhibited by IL-17A blockade. In the rat ex vivo and in vivo models, IL-17A blockade alleviated inflammatory immune effector release, tendon structural degeneration, tendon inflammation and impaired tendon function.
Conclusion: Our data provide evidence that IL-17A is a key contributor to the pathogenesis of tendinopathy by promoting tendon inflammation and degeneration and that IL-17A blockade may represent a potential therapy in early-stage tendinopathy.
期刊介绍:
RMD Open publishes high quality peer-reviewed original research covering the full spectrum of musculoskeletal disorders, rheumatism and connective tissue diseases, including osteoporosis, spine and rehabilitation. Clinical and epidemiological research, basic and translational medicine, interesting clinical cases, and smaller studies that add to the literature are all considered.