积雪草干燥时间的优化Urban:代谢组学研究脱水对初级和次级代谢物的影响

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Da Hye Ryu, Jwa Yeong Cho, Muhammad Hamayun, Su Hyeon Lee, Hyeong Ho Cha, Je Hyeong Jung, Ho-Youn Kim
{"title":"积雪草干燥时间的优化Urban:代谢组学研究脱水对初级和次级代谢物的影响","authors":"Da Hye Ryu,&nbsp;Jwa Yeong Cho,&nbsp;Muhammad Hamayun,&nbsp;Su Hyeon Lee,&nbsp;Hyeong Ho Cha,&nbsp;Je Hyeong Jung,&nbsp;Ho-Youn Kim","doi":"10.1186/s40538-025-00745-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Drying has been considered a preservation technique for reducing water activity, preventing microbial growth, and preserving the quality of aromatic and medicinal plants. Therefore, an understanding of the changes in plant metabolisms due to dehydration during drying and the resulting changes in the active components of medicinal crops is required. <i>Centella asiatica</i> (L.) Urban is one of the important medicinal plant for consumption or medicinal purposes with its four most abundant triterpenoids, including two sapogenins (asiatic acid, AA; madecassic acid, MS) and saponins (asiaticoside, AS; madecassoside, MS). This study investigated the effects of the rate of dehydration on <i>C. asiatica</i> using a metabolic approach and identified the proper drying time to obtain the highest active components.</p><h3>Results</h3><p>In fresh samples (0-h drying condition), the highest AA content and TCA-related components (citrate, glutamate, and aspartate) levels were observed. As drying progressed, even minimal drying (6 h) induced metabolic changes by suppressing photosynthesis. With extended drying time, a significant time-dependent increase in amino acid production was observed. While amino acid accumulation progressed, an increase in MA content was observed at 12 h of drying along with an increase in <i>Cab</i>AS gene expression levels. Subsequently, representative stress-related amino acids (GABA and proline) levels rose over time, peaking at 24 and 48 h of drying, respectively. At 48 h of drying, when the moisture in the <i>C. asiatica</i> had disappeared, an increased level of <i>Ca</i>AS expression (involved in biosynthesis of α-amyrin, the precursor of AA and MA) was observed. At extreme dehydration (96 h of drying), increased levels of <i>Ca</i>GT expression (involved in the glycosylation of AA and MA to produce AS and MS) were recorded. Consequently, these elevated biosynthesis gene expression levels resulted in increased saponins, including AS and MS content. However, beyond 96 h of drying, all the metabolites underwent degradation.</p><h3>Conclusions</h3><p>This study highlights that metabolic responses during drying significantly alter centellosides by stimulating diverse metabolic pathways. Optimizing the drying period would maximize active components (MS and AS) in <i>C. asiatica</i>, thereby enhancing its pharmaceutical value.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00745-7","citationCount":"0","resultStr":"{\"title\":\"Optimizing drying time for Centella asiatica (L.) Urban: metabolomic insights into dehydration effects on primary and secondary metabolites\",\"authors\":\"Da Hye Ryu,&nbsp;Jwa Yeong Cho,&nbsp;Muhammad Hamayun,&nbsp;Su Hyeon Lee,&nbsp;Hyeong Ho Cha,&nbsp;Je Hyeong Jung,&nbsp;Ho-Youn Kim\",\"doi\":\"10.1186/s40538-025-00745-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Drying has been considered a preservation technique for reducing water activity, preventing microbial growth, and preserving the quality of aromatic and medicinal plants. Therefore, an understanding of the changes in plant metabolisms due to dehydration during drying and the resulting changes in the active components of medicinal crops is required. <i>Centella asiatica</i> (L.) Urban is one of the important medicinal plant for consumption or medicinal purposes with its four most abundant triterpenoids, including two sapogenins (asiatic acid, AA; madecassic acid, MS) and saponins (asiaticoside, AS; madecassoside, MS). This study investigated the effects of the rate of dehydration on <i>C. asiatica</i> using a metabolic approach and identified the proper drying time to obtain the highest active components.</p><h3>Results</h3><p>In fresh samples (0-h drying condition), the highest AA content and TCA-related components (citrate, glutamate, and aspartate) levels were observed. As drying progressed, even minimal drying (6 h) induced metabolic changes by suppressing photosynthesis. With extended drying time, a significant time-dependent increase in amino acid production was observed. While amino acid accumulation progressed, an increase in MA content was observed at 12 h of drying along with an increase in <i>Cab</i>AS gene expression levels. Subsequently, representative stress-related amino acids (GABA and proline) levels rose over time, peaking at 24 and 48 h of drying, respectively. At 48 h of drying, when the moisture in the <i>C. asiatica</i> had disappeared, an increased level of <i>Ca</i>AS expression (involved in biosynthesis of α-amyrin, the precursor of AA and MA) was observed. At extreme dehydration (96 h of drying), increased levels of <i>Ca</i>GT expression (involved in the glycosylation of AA and MA to produce AS and MS) were recorded. Consequently, these elevated biosynthesis gene expression levels resulted in increased saponins, including AS and MS content. However, beyond 96 h of drying, all the metabolites underwent degradation.</p><h3>Conclusions</h3><p>This study highlights that metabolic responses during drying significantly alter centellosides by stimulating diverse metabolic pathways. Optimizing the drying period would maximize active components (MS and AS) in <i>C. asiatica</i>, thereby enhancing its pharmaceutical value.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00745-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-025-00745-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00745-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

干燥一直被认为是一种降低水分活性、防止微生物生长和保持芳香和药用植物品质的保存技术。因此,了解干燥过程中由于脱水导致的植物代谢变化以及药用作物活性成分的变化是必要的。积雪草(Centella asiatica)枸杞是一种重要的药用植物,含有四种最丰富的三萜,包括两种皂苷元(亚洲果酸,AA;合成酸(MS)和皂苷(积雪草苷,AS);madecassoside女士)。本研究采用代谢法研究了不同脱水速率对积雪草的影响,并确定了最佳干燥时间以获得最高的有效成分。结果新鲜样品(干燥0-h) AA含量最高,tca相关成分(柠檬酸、谷氨酸和天冬氨酸)含量最高。随着干燥的进行,即使最小的干燥(6小时)也会通过抑制光合作用引起代谢变化。随着干燥时间的延长,观察到氨基酸产量的显著时间依赖性增加。随着氨基酸积累的进行,干燥12 h时观察到MA含量增加,CabAS基因表达水平增加。随后,代表性的胁迫相关氨基酸(GABA和脯氨酸)水平随着时间的推移而上升,分别在干燥24和48 h达到峰值。在干燥48 h时,当亚洲木参中的水分消失时,观察到CaAS(参与α-amyrin的生物合成,AA和MA的前体)的表达水平升高。在极度脱水(干燥96 h)时,记录到CaGT表达水平升高(参与AA和MA的糖基化以产生AS和MS)。因此,这些升高的生物合成基因表达水平导致皂苷增加,包括AS和MS含量。然而,在干燥96 h后,所有代谢物都发生了降解。结论干燥过程中的代谢反应通过刺激不同的代谢途径显著改变了centel皂苷。优化干燥时间可以最大限度地提高积雪草的有效成分(MS和AS),从而提高积雪草的药用价值。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing drying time for Centella asiatica (L.) Urban: metabolomic insights into dehydration effects on primary and secondary metabolites

Background

Drying has been considered a preservation technique for reducing water activity, preventing microbial growth, and preserving the quality of aromatic and medicinal plants. Therefore, an understanding of the changes in plant metabolisms due to dehydration during drying and the resulting changes in the active components of medicinal crops is required. Centella asiatica (L.) Urban is one of the important medicinal plant for consumption or medicinal purposes with its four most abundant triterpenoids, including two sapogenins (asiatic acid, AA; madecassic acid, MS) and saponins (asiaticoside, AS; madecassoside, MS). This study investigated the effects of the rate of dehydration on C. asiatica using a metabolic approach and identified the proper drying time to obtain the highest active components.

Results

In fresh samples (0-h drying condition), the highest AA content and TCA-related components (citrate, glutamate, and aspartate) levels were observed. As drying progressed, even minimal drying (6 h) induced metabolic changes by suppressing photosynthesis. With extended drying time, a significant time-dependent increase in amino acid production was observed. While amino acid accumulation progressed, an increase in MA content was observed at 12 h of drying along with an increase in CabAS gene expression levels. Subsequently, representative stress-related amino acids (GABA and proline) levels rose over time, peaking at 24 and 48 h of drying, respectively. At 48 h of drying, when the moisture in the C. asiatica had disappeared, an increased level of CaAS expression (involved in biosynthesis of α-amyrin, the precursor of AA and MA) was observed. At extreme dehydration (96 h of drying), increased levels of CaGT expression (involved in the glycosylation of AA and MA to produce AS and MS) were recorded. Consequently, these elevated biosynthesis gene expression levels resulted in increased saponins, including AS and MS content. However, beyond 96 h of drying, all the metabolites underwent degradation.

Conclusions

This study highlights that metabolic responses during drying significantly alter centellosides by stimulating diverse metabolic pathways. Optimizing the drying period would maximize active components (MS and AS) in C. asiatica, thereby enhancing its pharmaceutical value.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信