{"title":"Design of fish-scale microstructured stents and their biomechanical effects on cerebral aneurysm.","authors":"Xuanze Fan, Yanru Xue, Boya Liu, Aohua Zhang, Lijuan Song, Cungen Ma, Qingli Zheng, Yongwang Zhao, Meng Zhang, Xiaogang Wu, Dong Ma, Yonghong Wang","doi":"10.1080/10255842.2025.2465343","DOIUrl":null,"url":null,"abstract":"<p><p>The addition of microstructures to the inner surface of the stent reduces resistance and inhibits the phenomenon of blood adhesion. In this study, the design of a fish-scale microstructured vascular stent was proposed based on bionics, and its main design parameters were optimized using the finite element method. In addition, the hemodynamic effects of a standard stent and a fish-scale microstructured stent on an ideal cerebral aneurysm were comparatively analyzed. The results showed that the fish-scale microstructured stent significantly accelerated intraluminal blood flow velocity by 11.6% compared to the standard stent. In addition, the fish-scale microstructured stent was able to reduce blood flow into the aneurysm lumen by 28.6%.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-21"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2465343","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Design of fish-scale microstructured stents and their biomechanical effects on cerebral aneurysm.
The addition of microstructures to the inner surface of the stent reduces resistance and inhibits the phenomenon of blood adhesion. In this study, the design of a fish-scale microstructured vascular stent was proposed based on bionics, and its main design parameters were optimized using the finite element method. In addition, the hemodynamic effects of a standard stent and a fish-scale microstructured stent on an ideal cerebral aneurysm were comparatively analyzed. The results showed that the fish-scale microstructured stent significantly accelerated intraluminal blood flow velocity by 11.6% compared to the standard stent. In addition, the fish-scale microstructured stent was able to reduce blood flow into the aneurysm lumen by 28.6%.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.