NIBS增强脑卒中后神经可塑性的临床疗效。

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Qing Ye , Xin Wang , Ting Li , Jing Xu , Xiangming Ye
{"title":"NIBS增强脑卒中后神经可塑性的临床疗效。","authors":"Qing Ye ,&nbsp;Xin Wang ,&nbsp;Ting Li ,&nbsp;Jing Xu ,&nbsp;Xiangming Ye","doi":"10.1016/j.jneumeth.2025.110399","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>For stroke patients, a therapeutic approach named Non-invasive brain stimulation (NIBS) was applied and it has gained attention. This NIBS approach enhances the neuroplasticity and facilitates in functional Stroke Rehabilitation (SR) through regulating the brain activity. This NIBS has several advantages, but, the variability in patient responses, poor personalized treatment plans, and challenges in predicting rehabilitation stages may limit its clinical application. The generalized approaches are usually employed by the current SR methods. Here, the Patient-Centric (PC) factors that impacts neuroplasticity fails to be considered by the current SR methods. Thus, Real-Time mechanisms in monitoring and adapting to neural responses are lacking in the current SR methods.</div></div><div><h3>Methods</h3><div>A novel SR with Machine Learning (ML), (SR-ML) framework is suggested in this study. This suggested study integrates the patient-specific data, neuroimaging, and NIBS intervention models for the purpose of overcoming those issues. By optimising stimulation parameters based on patient profiles, the SR-ML framework uses ML algorithms. This integration will enhance the efficacy and facilitates the customized NIBS therapies. During NIBS sessions, the Time-Series (TS) neural data is analyzed and classified by the application of the Recurrent (NN) Neural Network (RNN). The temporal relationships and patterns indicating neuroplastic variations were effectively identified by this RNN.</div></div><div><h3>Results</h3><div>The stroke patients neuroplasticity signs was improved, and effective rehabilitation outcomes was attained by the suggested SR-ML model, and it was demonstrated by the outcomes of the simulation. The accuracy and adaptability of NIBS interventions were enhanced by the potential of ML, and it is highlighted by the outcomes.</div></div><div><h3>Conclusion</h3><div>A revolutionized development in the customized SR was facilitated by the suggested SR-ML framework, as it integrates ML with NIBS. More effective and PC neurotherapeutic approaches was attained by RT classification and optimization of simulation protocols. Thus, the limitations in the current SR methods was addressed by the effective method</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110399"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical efficacy of NIBS in enhancing neuroplasticity for stroke recovery\",\"authors\":\"Qing Ye ,&nbsp;Xin Wang ,&nbsp;Ting Li ,&nbsp;Jing Xu ,&nbsp;Xiangming Ye\",\"doi\":\"10.1016/j.jneumeth.2025.110399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>For stroke patients, a therapeutic approach named Non-invasive brain stimulation (NIBS) was applied and it has gained attention. This NIBS approach enhances the neuroplasticity and facilitates in functional Stroke Rehabilitation (SR) through regulating the brain activity. This NIBS has several advantages, but, the variability in patient responses, poor personalized treatment plans, and challenges in predicting rehabilitation stages may limit its clinical application. The generalized approaches are usually employed by the current SR methods. Here, the Patient-Centric (PC) factors that impacts neuroplasticity fails to be considered by the current SR methods. Thus, Real-Time mechanisms in monitoring and adapting to neural responses are lacking in the current SR methods.</div></div><div><h3>Methods</h3><div>A novel SR with Machine Learning (ML), (SR-ML) framework is suggested in this study. This suggested study integrates the patient-specific data, neuroimaging, and NIBS intervention models for the purpose of overcoming those issues. By optimising stimulation parameters based on patient profiles, the SR-ML framework uses ML algorithms. This integration will enhance the efficacy and facilitates the customized NIBS therapies. During NIBS sessions, the Time-Series (TS) neural data is analyzed and classified by the application of the Recurrent (NN) Neural Network (RNN). The temporal relationships and patterns indicating neuroplastic variations were effectively identified by this RNN.</div></div><div><h3>Results</h3><div>The stroke patients neuroplasticity signs was improved, and effective rehabilitation outcomes was attained by the suggested SR-ML model, and it was demonstrated by the outcomes of the simulation. The accuracy and adaptability of NIBS interventions were enhanced by the potential of ML, and it is highlighted by the outcomes.</div></div><div><h3>Conclusion</h3><div>A revolutionized development in the customized SR was facilitated by the suggested SR-ML framework, as it integrates ML with NIBS. More effective and PC neurotherapeutic approaches was attained by RT classification and optimization of simulation protocols. Thus, the limitations in the current SR methods was addressed by the effective method</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"417 \",\"pages\":\"Article 110399\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025000408\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000408","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:针对脑卒中患者,一种名为“无创脑刺激”(Non-invasive brain stimulation, NIBS)的治疗方法得到了广泛关注。NIBS方法通过调节脑活动增强神经可塑性,促进脑卒中功能康复。这种NIBS有几个优点,但是,患者反应的可变性、较差的个性化治疗计划以及预测康复阶段的挑战可能会限制其临床应用。目前的SR方法通常采用广义方法。在这里,以患者为中心(PC)的因素影响神经可塑性没有被目前的SR方法考虑。因此,目前的SR方法缺乏监测和适应神经反应的实时机制。方法:本研究提出了一种新的基于机器学习(ML)的SR-ML框架。为了克服这些问题,本建议的研究整合了患者特异性数据、神经影像学和NIBS干预模型。SR-ML框架使用ML算法,根据患者概况优化刺激参数。这种整合将提高疗效,并促进定制NIBS治疗。在NIBS会话中,使用递归神经网络(RNN)对时间序列(TS)神经数据进行分析和分类。该RNN有效地识别了表明神经可塑性变化的时间关系和模式。结果:提出的SR-ML模型改善了脑卒中患者的神经可塑性体征,取得了有效的康复效果,仿真结果证实了这一点。ML的潜力增强了NIBS干预措施的准确性和适应性,结果也突出了这一点。结论:建议的SR-ML框架促进了定制SR的革命性发展,因为它将ML与NIBS集成在一起。通过RT分类和模拟方案的优化,获得了更有效的神经治疗方法。因此,有效的方法解决了当前SR方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical efficacy of NIBS in enhancing neuroplasticity for stroke recovery

Background

For stroke patients, a therapeutic approach named Non-invasive brain stimulation (NIBS) was applied and it has gained attention. This NIBS approach enhances the neuroplasticity and facilitates in functional Stroke Rehabilitation (SR) through regulating the brain activity. This NIBS has several advantages, but, the variability in patient responses, poor personalized treatment plans, and challenges in predicting rehabilitation stages may limit its clinical application. The generalized approaches are usually employed by the current SR methods. Here, the Patient-Centric (PC) factors that impacts neuroplasticity fails to be considered by the current SR methods. Thus, Real-Time mechanisms in monitoring and adapting to neural responses are lacking in the current SR methods.

Methods

A novel SR with Machine Learning (ML), (SR-ML) framework is suggested in this study. This suggested study integrates the patient-specific data, neuroimaging, and NIBS intervention models for the purpose of overcoming those issues. By optimising stimulation parameters based on patient profiles, the SR-ML framework uses ML algorithms. This integration will enhance the efficacy and facilitates the customized NIBS therapies. During NIBS sessions, the Time-Series (TS) neural data is analyzed and classified by the application of the Recurrent (NN) Neural Network (RNN). The temporal relationships and patterns indicating neuroplastic variations were effectively identified by this RNN.

Results

The stroke patients neuroplasticity signs was improved, and effective rehabilitation outcomes was attained by the suggested SR-ML model, and it was demonstrated by the outcomes of the simulation. The accuracy and adaptability of NIBS interventions were enhanced by the potential of ML, and it is highlighted by the outcomes.

Conclusion

A revolutionized development in the customized SR was facilitated by the suggested SR-ML framework, as it integrates ML with NIBS. More effective and PC neurotherapeutic approaches was attained by RT classification and optimization of simulation protocols. Thus, the limitations in the current SR methods was addressed by the effective method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信