开发商用微x射线荧光系统用于立体软x射线成像。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-01-19 DOI:10.1177/08953996241291356
Ricardo Baettig, Ben Ingram, Ricardo A Cabeza
{"title":"开发商用微x射线荧光系统用于立体软x射线成像。","authors":"Ricardo Baettig, Ben Ingram, Ricardo A Cabeza","doi":"10.1177/08953996241291356","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundCommercial micro X-ray fluorescence (μXRF) systems often employ a tilted convergent beam, which can cause a misalignment between X-ray cartography and the corresponding visible images. This misalignment is typically considered a disadvantage, as it hinders the accurate spatial correlation of elemental information. However, this apparent drawback can be exploited to facilitate X-ray stereoscopy.ObjectiveTo demonstrate the use of unmodified commercial μXRF equipment to estimate the 3D configurations of metals and voids within a low-atomic-weight matrix, specifically polymethyl methacrylate, and to explore the implications for enhancing μXRF mapping techniques. This approach could have applications in materials science, archaeology, and other fields requiring non-destructive 3D chemical mapping.MethodsUsing unmodified commercial μXRF equipment, we leveraged both XRF and Compton scattering effects to quantitatively reconstruct the size, position, and depth of embedded tungsten, copper, and silver objects. The study specifically examines how beam divergence affects the acutance of objects located deeper within the sample.ResultsOur findings indicate a depth estimation bias ranging from 4% to 15% for depths between 24 mm, and a size estimation bias below 3.2%. These results validate the methodology and highlight the robustness of our approach under typical operational settings, suggesting that the technique could be applied to a wide range of samples with minimal modifications to existing μXRF systems.ConclusionsThe study confirms that the inclination-induced misalignment in μXRF systems can be harnessed to enhance three-dimensional imaging capabilities. Our work establishes a foundation for advancing current μXRF mapping techniques and interpretation strategies, potentially broadening the applications of μXRF in various scientific and industrial fields.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"285-296"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting commercial micro X-ray fluorescence systems for stereoscopic soft X-ray imaging.\",\"authors\":\"Ricardo Baettig, Ben Ingram, Ricardo A Cabeza\",\"doi\":\"10.1177/08953996241291356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundCommercial micro X-ray fluorescence (μXRF) systems often employ a tilted convergent beam, which can cause a misalignment between X-ray cartography and the corresponding visible images. This misalignment is typically considered a disadvantage, as it hinders the accurate spatial correlation of elemental information. However, this apparent drawback can be exploited to facilitate X-ray stereoscopy.ObjectiveTo demonstrate the use of unmodified commercial μXRF equipment to estimate the 3D configurations of metals and voids within a low-atomic-weight matrix, specifically polymethyl methacrylate, and to explore the implications for enhancing μXRF mapping techniques. This approach could have applications in materials science, archaeology, and other fields requiring non-destructive 3D chemical mapping.MethodsUsing unmodified commercial μXRF equipment, we leveraged both XRF and Compton scattering effects to quantitatively reconstruct the size, position, and depth of embedded tungsten, copper, and silver objects. The study specifically examines how beam divergence affects the acutance of objects located deeper within the sample.ResultsOur findings indicate a depth estimation bias ranging from 4% to 15% for depths between 24 mm, and a size estimation bias below 3.2%. These results validate the methodology and highlight the robustness of our approach under typical operational settings, suggesting that the technique could be applied to a wide range of samples with minimal modifications to existing μXRF systems.ConclusionsThe study confirms that the inclination-induced misalignment in μXRF systems can be harnessed to enhance three-dimensional imaging capabilities. Our work establishes a foundation for advancing current μXRF mapping techniques and interpretation strategies, potentially broadening the applications of μXRF in various scientific and industrial fields.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"285-296\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241291356\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241291356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

背景:商用微x射线荧光(μXRF)系统通常采用倾斜的会聚光束,这可能导致x射线制图与相应可见图像之间的错位。这种不对齐通常被认为是一个缺点,因为它阻碍了元素信息的精确空间相关性。然而,这个明显的缺点可以用来促进x射线立体成像。目的:演示使用未经修改的商用μXRF设备来估计低原子质量矩阵(特别是聚甲基丙烯酸甲酯)中金属和空隙的三维构型,并探讨增强μXRF测绘技术的意义。这种方法可以应用于材料科学、考古学和其他需要非破坏性3D化学制图的领域。方法:利用未改装的商用μXRF设备,利用XRF和康普顿散射效应,定量重建钨、铜和银嵌入物的尺寸、位置和深度。该研究特别检查了光束发散如何影响位于样本深处的物体的锐度。结果:我们的研究结果表明,深度在24毫米之间的深度估计偏差在4%到15%之间,尺寸估计偏差低于3.2%。这些结果验证了该方法,并强调了我们的方法在典型操作设置下的鲁棒性,表明该技术可以应用于广泛的样品,对现有μXRF系统进行最小的修改。结论:该研究证实了μXRF系统中倾斜引起的不对准可以用来增强三维成像能力。我们的工作为推进当前的μXRF制图技术和解释策略奠定了基础,有可能扩大μXRF在各种科学和工业领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting commercial micro X-ray fluorescence systems for stereoscopic soft X-ray imaging.

BackgroundCommercial micro X-ray fluorescence (μXRF) systems often employ a tilted convergent beam, which can cause a misalignment between X-ray cartography and the corresponding visible images. This misalignment is typically considered a disadvantage, as it hinders the accurate spatial correlation of elemental information. However, this apparent drawback can be exploited to facilitate X-ray stereoscopy.ObjectiveTo demonstrate the use of unmodified commercial μXRF equipment to estimate the 3D configurations of metals and voids within a low-atomic-weight matrix, specifically polymethyl methacrylate, and to explore the implications for enhancing μXRF mapping techniques. This approach could have applications in materials science, archaeology, and other fields requiring non-destructive 3D chemical mapping.MethodsUsing unmodified commercial μXRF equipment, we leveraged both XRF and Compton scattering effects to quantitatively reconstruct the size, position, and depth of embedded tungsten, copper, and silver objects. The study specifically examines how beam divergence affects the acutance of objects located deeper within the sample.ResultsOur findings indicate a depth estimation bias ranging from 4% to 15% for depths between 24 mm, and a size estimation bias below 3.2%. These results validate the methodology and highlight the robustness of our approach under typical operational settings, suggesting that the technique could be applied to a wide range of samples with minimal modifications to existing μXRF systems.ConclusionsThe study confirms that the inclination-induced misalignment in μXRF systems can be harnessed to enhance three-dimensional imaging capabilities. Our work establishes a foundation for advancing current μXRF mapping techniques and interpretation strategies, potentially broadening the applications of μXRF in various scientific and industrial fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信