DR-ConvNeXt:用于重建ConvNeXt模型结构的DR分类方法。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI:10.1177/08953996241311190
Pengfei Song, Yun Wu
{"title":"DR-ConvNeXt:用于重建ConvNeXt模型结构的DR分类方法。","authors":"Pengfei Song, Yun Wu","doi":"10.1177/08953996241311190","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundDiabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness among the working-age population. However, the complex distribution and variability of lesion characteristics within the dataset present significant challenges for achieving high-precision classification of DR images.ObjectiveWe propose an automatic classification method for DR images, named DR-ConvNeXt, which aims to achieve accurate diagnosis of lesion types.MethodsThe method involves designing a dual-branch addition convolution structure and appropriately increasing the number of stacked ConvNeXt Block convolution layers. Additionally, a unique primary-auxiliary loss function is introduced, contributing to a significant enhancement in DR classification accuracy within the DR-ConvNeXt model.ResultsThe model achieved an accuracy of 91.8%,sensitivity of 81.6%, and specificity of 97.9% on the APTOS dataset. On the Messidor-2 dataset, the model achieved an accuracy of 83.6%, sensitivity of 74.0%, and specificity of 94.6%.ConclusionsThe DR-ConvNeXt model's classification results on the two publicly available datasets illustrate the significant advantages in all evaluation indexes for DR classification.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"448-460"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DR-ConvNeXt: DR classification method for reconstructing ConvNeXt model structure.\",\"authors\":\"Pengfei Song, Yun Wu\",\"doi\":\"10.1177/08953996241311190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundDiabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness among the working-age population. However, the complex distribution and variability of lesion characteristics within the dataset present significant challenges for achieving high-precision classification of DR images.ObjectiveWe propose an automatic classification method for DR images, named DR-ConvNeXt, which aims to achieve accurate diagnosis of lesion types.MethodsThe method involves designing a dual-branch addition convolution structure and appropriately increasing the number of stacked ConvNeXt Block convolution layers. Additionally, a unique primary-auxiliary loss function is introduced, contributing to a significant enhancement in DR classification accuracy within the DR-ConvNeXt model.ResultsThe model achieved an accuracy of 91.8%,sensitivity of 81.6%, and specificity of 97.9% on the APTOS dataset. On the Messidor-2 dataset, the model achieved an accuracy of 83.6%, sensitivity of 74.0%, and specificity of 94.6%.ConclusionsThe DR-ConvNeXt model's classification results on the two publicly available datasets illustrate the significant advantages in all evaluation indexes for DR classification.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"448-460\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241311190\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241311190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

背景:糖尿病视网膜病变(DR)是糖尿病的主要并发症,也是导致工作年龄人群失明的主要原因。然而,数据集中病变特征的复杂分布和可变性为实现DR图像的高精度分类带来了重大挑战。目的:提出一种DR图像自动分类方法DR- convnext,以实现病灶类型的准确诊断。方法:设计一种双分支加法卷积结构,适当增加堆叠的ConvNeXt Block卷积层数。此外,引入了一个独特的主辅助损失函数,有助于在DR- convnext模型中显著提高DR分类精度。结果:该模型在APTOS数据集上的准确率为91.8%,灵敏度为81.6%,特异性为97.9%。在messior -2数据集上,该模型的准确率为83.6%,灵敏度为74.0%,特异性为94.6%。结论:DR- convnext模型在两个公开数据集上的分类结果表明,DR分类的所有评价指标均具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DR-ConvNeXt: DR classification method for reconstructing ConvNeXt model structure.

BackgroundDiabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness among the working-age population. However, the complex distribution and variability of lesion characteristics within the dataset present significant challenges for achieving high-precision classification of DR images.ObjectiveWe propose an automatic classification method for DR images, named DR-ConvNeXt, which aims to achieve accurate diagnosis of lesion types.MethodsThe method involves designing a dual-branch addition convolution structure and appropriately increasing the number of stacked ConvNeXt Block convolution layers. Additionally, a unique primary-auxiliary loss function is introduced, contributing to a significant enhancement in DR classification accuracy within the DR-ConvNeXt model.ResultsThe model achieved an accuracy of 91.8%,sensitivity of 81.6%, and specificity of 97.9% on the APTOS dataset. On the Messidor-2 dataset, the model achieved an accuracy of 83.6%, sensitivity of 74.0%, and specificity of 94.6%.ConclusionsThe DR-ConvNeXt model's classification results on the two publicly available datasets illustrate the significant advantages in all evaluation indexes for DR classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信