使用新的深度学习框架在x射线图像中有效分类COVID-19。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-01-19 DOI:10.1177/08953996241290893
P Thilagavathi, R Geetha, S Jothi Shri, K Somasundaram
{"title":"使用新的深度学习框架在x射线图像中有效分类COVID-19。","authors":"P Thilagavathi, R Geetha, S Jothi Shri, K Somasundaram","doi":"10.1177/08953996241290893","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundThe global concern regarding the diagnosis of lung-related diseases has intensified due to the rapid transmission of coronavirus disease 2019 (COVID-19). Artificial Intelligence (AI) based methods are emerging technologies that help to identify COVID-19 in chest X-ray images quickly.MethodIn this study, the publically accessible database COVID-19 Chest X-ray is used to diagnose lung-related disorders using a hybrid deep-learning approach. This dataset is pre-processed using an Improved Anisotropic Diffusion Filtering (IADF) method. After that, the features extraction methods named Grey-level Co-occurrence Matrix (GLCM), uniform Local Binary Pattern (uLBP), Histogram of Gradients (HoG), and Horizontal-vertical neighbourhood local binary pattern (hvnLBP) are utilized to extract the useful features from the pre-processed dataset. The dimensionality of a feature set is subsequently reduced through the utilization of an Adaptive Reptile Search Optimization (ARSO) algorithm, which optimally selects the features for flawless classification. Finally, the hybrid deep learning algorithm, Multi-head Attention-based Bi-directional Gated Recurrent unit with Deep Sparse Auto-encoder Network (MhA-Bi-GRU with DSAN), is developed to perform the multiclass classification problem. Moreover, a Dynamic Levy-Flight Chimp Optimization (DLF-CO) algorithm is applied to minimize the loss function in the hybrid algorithm.ResultsThe whole simulation is performed using the Python language in which the 0.001 learning rate accomplishes the proposed method's higher classification accuracy of 0.95%, and 0.98% is obtained for a 0.0001 learning rate. Overall, the performance of the proposed methodology outperforms all existing methods employing different performance parameters.ConclusionThe proposed hybrid deep-learning approach with various feature extraction, and optimal feature selection effectively diagnoses disease using Chest X-ray images demonstrated through classification accuracy.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"297-316"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective COVID-19 classification in X-ray images using a new deep learning framework.\",\"authors\":\"P Thilagavathi, R Geetha, S Jothi Shri, K Somasundaram\",\"doi\":\"10.1177/08953996241290893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundThe global concern regarding the diagnosis of lung-related diseases has intensified due to the rapid transmission of coronavirus disease 2019 (COVID-19). Artificial Intelligence (AI) based methods are emerging technologies that help to identify COVID-19 in chest X-ray images quickly.MethodIn this study, the publically accessible database COVID-19 Chest X-ray is used to diagnose lung-related disorders using a hybrid deep-learning approach. This dataset is pre-processed using an Improved Anisotropic Diffusion Filtering (IADF) method. After that, the features extraction methods named Grey-level Co-occurrence Matrix (GLCM), uniform Local Binary Pattern (uLBP), Histogram of Gradients (HoG), and Horizontal-vertical neighbourhood local binary pattern (hvnLBP) are utilized to extract the useful features from the pre-processed dataset. The dimensionality of a feature set is subsequently reduced through the utilization of an Adaptive Reptile Search Optimization (ARSO) algorithm, which optimally selects the features for flawless classification. Finally, the hybrid deep learning algorithm, Multi-head Attention-based Bi-directional Gated Recurrent unit with Deep Sparse Auto-encoder Network (MhA-Bi-GRU with DSAN), is developed to perform the multiclass classification problem. Moreover, a Dynamic Levy-Flight Chimp Optimization (DLF-CO) algorithm is applied to minimize the loss function in the hybrid algorithm.ResultsThe whole simulation is performed using the Python language in which the 0.001 learning rate accomplishes the proposed method's higher classification accuracy of 0.95%, and 0.98% is obtained for a 0.0001 learning rate. Overall, the performance of the proposed methodology outperforms all existing methods employing different performance parameters.ConclusionThe proposed hybrid deep-learning approach with various feature extraction, and optimal feature selection effectively diagnoses disease using Chest X-ray images demonstrated through classification accuracy.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"297-316\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241290893\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241290893","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于2019冠状病毒病(COVID-19)的快速传播,全球对肺部相关疾病诊断的关注加剧。基于人工智能(AI)的方法是有助于快速识别胸部x射线图像中的COVID-19的新兴技术。方法:本研究利用可公开访问的COVID-19胸部x线数据库,采用混合深度学习方法诊断肺部相关疾病。该数据集采用改进的各向异性扩散滤波(IADF)方法进行预处理。然后,利用灰度共生矩阵(GLCM)、均匀局部二值模式(uLBP)、梯度直方图(HoG)和水平-垂直邻域局部二值模式(hvnLBP)等特征提取方法从预处理后的数据集中提取有用的特征。随后,通过使用自适应爬行动物搜索优化(ARSO)算法降低特征集的维数,该算法最优地选择特征进行完美分类。最后,提出了一种基于多头注意力的双向门控循环单元深度稀疏自编码器网络(MhA-Bi-GRU with DSAN)混合深度学习算法来解决多类分类问题。在混合算法中,采用动态Levy-Flight Chimp Optimization (DLF-CO)算法最小化损失函数。结果:整个模拟使用Python语言进行,其中0.001学习率实现了所提出方法的较高分类准确率0.95%,0.0001学习率获得0.98%。总体而言,所提出的方法的性能优于采用不同性能参数的所有现有方法。结论:本文提出的混合深度学习方法结合多种特征提取和最优特征选择,能够有效地利用胸部x线图像进行疾病诊断,分类精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective COVID-19 classification in X-ray images using a new deep learning framework.

BackgroundThe global concern regarding the diagnosis of lung-related diseases has intensified due to the rapid transmission of coronavirus disease 2019 (COVID-19). Artificial Intelligence (AI) based methods are emerging technologies that help to identify COVID-19 in chest X-ray images quickly.MethodIn this study, the publically accessible database COVID-19 Chest X-ray is used to diagnose lung-related disorders using a hybrid deep-learning approach. This dataset is pre-processed using an Improved Anisotropic Diffusion Filtering (IADF) method. After that, the features extraction methods named Grey-level Co-occurrence Matrix (GLCM), uniform Local Binary Pattern (uLBP), Histogram of Gradients (HoG), and Horizontal-vertical neighbourhood local binary pattern (hvnLBP) are utilized to extract the useful features from the pre-processed dataset. The dimensionality of a feature set is subsequently reduced through the utilization of an Adaptive Reptile Search Optimization (ARSO) algorithm, which optimally selects the features for flawless classification. Finally, the hybrid deep learning algorithm, Multi-head Attention-based Bi-directional Gated Recurrent unit with Deep Sparse Auto-encoder Network (MhA-Bi-GRU with DSAN), is developed to perform the multiclass classification problem. Moreover, a Dynamic Levy-Flight Chimp Optimization (DLF-CO) algorithm is applied to minimize the loss function in the hybrid algorithm.ResultsThe whole simulation is performed using the Python language in which the 0.001 learning rate accomplishes the proposed method's higher classification accuracy of 0.95%, and 0.98% is obtained for a 0.0001 learning rate. Overall, the performance of the proposed methodology outperforms all existing methods employing different performance parameters.ConclusionThe proposed hybrid deep-learning approach with various feature extraction, and optimal feature selection effectively diagnoses disease using Chest X-ray images demonstrated through classification accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信