使用临床和影像学数据进行乳腺癌风险分层的多模型机器学习框架。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-01-27 DOI:10.1177/08953996241308175
Lu Miao, Zidong Li, Jinnan Gao
{"title":"使用临床和影像学数据进行乳腺癌风险分层的多模型机器学习框架。","authors":"Lu Miao, Zidong Li, Jinnan Gao","doi":"10.1177/08953996241308175","DOIUrl":null,"url":null,"abstract":"<p><p>PurposeThis study presents a comprehensive machine learning framework for assessing breast cancer malignancy by integrating clinical features with imaging features derived from deep learning.MethodsThe dataset included 1668 patients with documented breast lesions, incorporating clinical data (e.g., age, BI-RADS category, lesion size, margins, and calcifications) alongside mammographic images processed using four CNN architectures: EfficientNet, ResNet, DenseNet, and InceptionNet. Three predictive configurations were developed: an imaging-only model, a hybrid model combining imaging and clinical data, and a stacking-based ensemble model that aggregates both data types to enhance predictive accuracy. Twelve feature selection techniques, including ReliefF and Fisher Score, were applied to identify key predictive features. Model performance was evaluated using accuracy and AUC, with 5-fold cross-valida tion and hyperparameter tuning to ensure robustness.ResultsThe imaging-only models demonstrated strong predictive performance, with EfficientNet achieving an AUC of 0.76. The hybrid model combining imaging and clinical data reached the highest accuracy of 83% and an AUC of 0.87, underscoring the benefits of data integration. The stacking-based ensemble model further optimized accuracy, reaching a peak AUC of 0.94, demonstrating its potential as a reliable tool for malignancy risk assessment.ConclusionThis study highlights the importance of integrating clinical and deep imaging features for breast cancer risk stratification, with the stacking-based model.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"360-375"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-model machine learning framework for breast cancer risk stratification using clinical and imaging data.\",\"authors\":\"Lu Miao, Zidong Li, Jinnan Gao\",\"doi\":\"10.1177/08953996241308175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PurposeThis study presents a comprehensive machine learning framework for assessing breast cancer malignancy by integrating clinical features with imaging features derived from deep learning.MethodsThe dataset included 1668 patients with documented breast lesions, incorporating clinical data (e.g., age, BI-RADS category, lesion size, margins, and calcifications) alongside mammographic images processed using four CNN architectures: EfficientNet, ResNet, DenseNet, and InceptionNet. Three predictive configurations were developed: an imaging-only model, a hybrid model combining imaging and clinical data, and a stacking-based ensemble model that aggregates both data types to enhance predictive accuracy. Twelve feature selection techniques, including ReliefF and Fisher Score, were applied to identify key predictive features. Model performance was evaluated using accuracy and AUC, with 5-fold cross-valida tion and hyperparameter tuning to ensure robustness.ResultsThe imaging-only models demonstrated strong predictive performance, with EfficientNet achieving an AUC of 0.76. The hybrid model combining imaging and clinical data reached the highest accuracy of 83% and an AUC of 0.87, underscoring the benefits of data integration. The stacking-based ensemble model further optimized accuracy, reaching a peak AUC of 0.94, demonstrating its potential as a reliable tool for malignancy risk assessment.ConclusionThis study highlights the importance of integrating clinical and deep imaging features for breast cancer risk stratification, with the stacking-based model.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"360-375\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241308175\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241308175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究提出了一个综合的机器学习框架,通过整合临床特征和来自深度学习的影像学特征来评估乳腺癌恶性。方法:该数据集包括1668例有记录的乳腺病变患者,包括临床数据(如年龄、BI-RADS类别、病变大小、边缘和钙化)以及使用四种CNN架构(EfficientNet、ResNet、DenseNet和InceptionNet)处理的乳房x线照片。开发了三种预测配置:仅成像模型,结合成像和临床数据的混合模型,以及基于堆栈的集成模型,该模型聚合了两种数据类型以提高预测准确性。采用ReliefF和Fisher Score等12种特征选择技术识别关键预测特征。使用精度和AUC评估模型性能,并进行5倍交叉验证和超参数调整以确保鲁棒性。结果:仅成像模型显示出强大的预测性能,其中effentnet实现了0.76的AUC。结合影像和临床数据的混合模型达到了83%的最高准确率和0.87的AUC,强调了数据整合的好处。基于堆叠的集成模型进一步优化了准确性,达到了0.94的峰值AUC,显示了其作为恶性肿瘤风险评估可靠工具的潜力。结论:本研究强调了结合临床和深部影像学特征对乳腺癌风险分层的重要性,并采用基于堆叠的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-model machine learning framework for breast cancer risk stratification using clinical and imaging data.

PurposeThis study presents a comprehensive machine learning framework for assessing breast cancer malignancy by integrating clinical features with imaging features derived from deep learning.MethodsThe dataset included 1668 patients with documented breast lesions, incorporating clinical data (e.g., age, BI-RADS category, lesion size, margins, and calcifications) alongside mammographic images processed using four CNN architectures: EfficientNet, ResNet, DenseNet, and InceptionNet. Three predictive configurations were developed: an imaging-only model, a hybrid model combining imaging and clinical data, and a stacking-based ensemble model that aggregates both data types to enhance predictive accuracy. Twelve feature selection techniques, including ReliefF and Fisher Score, were applied to identify key predictive features. Model performance was evaluated using accuracy and AUC, with 5-fold cross-valida tion and hyperparameter tuning to ensure robustness.ResultsThe imaging-only models demonstrated strong predictive performance, with EfficientNet achieving an AUC of 0.76. The hybrid model combining imaging and clinical data reached the highest accuracy of 83% and an AUC of 0.87, underscoring the benefits of data integration. The stacking-based ensemble model further optimized accuracy, reaching a peak AUC of 0.94, demonstrating its potential as a reliable tool for malignancy risk assessment.ConclusionThis study highlights the importance of integrating clinical and deep imaging features for breast cancer risk stratification, with the stacking-based model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信