基于深度学习的脊髓分裂瘤和脑膜瘤的磁共振成像分类和鉴别。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-11-27 DOI:10.1177/08953996241289745
Yidan Liu, Zhenhua Zhou, Yuanjun Wang
{"title":"基于深度学习的脊髓分裂瘤和脑膜瘤的磁共振成像分类和鉴别。","authors":"Yidan Liu, Zhenhua Zhou, Yuanjun Wang","doi":"10.1177/08953996241289745","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgroud: </strong>Schwannoma (SCH) and meningiomas (MEN) are the two most common primary spinal cord tumors. Differentiating between them preoperatively remains a clinical challenge due to the substantial overlap in their clinical presentation and imaging characteristics.</p><p><strong>Objective: </strong>The objective of this study is to facilitate early diagnosis of patients and reduce clinician stress by constructing a deep learning-based classification model for automatic diagnosis of schwannoma and meningiomas using magnetic resonance images (MRI).</p><p><strong>Methods: </strong>We retrospectively collected MRI images of 74 patients with pathologically confirmed schwannoma and meningiomas from 2015 to 2020 at a local hosipital, and constructed a CNN model based on the PyTorch's deep learning framework for the discrimination between the two. First, a modified feature fusion CNN model (ResNet34-SKConv) was trained by introducing a selective convolutional kernel module into the original CNN model. The introduction of the selective convolutional kernel module enhances the network's focus on tumor features and effectively improves the network's performance. Finally, the trained model was used to process all the MRI image slices to achieve the classification of SCH and MEN patients by the voting prediction method.</p><p><strong>Results: </strong>Using the 5-fold cross-validation method, this new ResNet34-SKConv model achieves a classification accuracy of 92.32%, a specificity of 95.87%, and a F1-score of 93.54, respectively.</p><p><strong>Conclusion: </strong>This study demonstrated that a classification model using a deep learning network can be effective in achieving differential diagnosis of SCH and MEN. Thus, the new method has great potential for developing new computer-aided diagnosis and applications with future clinical practice.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"26-36"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI classification and discrimination of spinal schwannoma and meningioma based on deep learning.\",\"authors\":\"Yidan Liu, Zhenhua Zhou, Yuanjun Wang\",\"doi\":\"10.1177/08953996241289745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Backgroud: </strong>Schwannoma (SCH) and meningiomas (MEN) are the two most common primary spinal cord tumors. Differentiating between them preoperatively remains a clinical challenge due to the substantial overlap in their clinical presentation and imaging characteristics.</p><p><strong>Objective: </strong>The objective of this study is to facilitate early diagnosis of patients and reduce clinician stress by constructing a deep learning-based classification model for automatic diagnosis of schwannoma and meningiomas using magnetic resonance images (MRI).</p><p><strong>Methods: </strong>We retrospectively collected MRI images of 74 patients with pathologically confirmed schwannoma and meningiomas from 2015 to 2020 at a local hosipital, and constructed a CNN model based on the PyTorch's deep learning framework for the discrimination between the two. First, a modified feature fusion CNN model (ResNet34-SKConv) was trained by introducing a selective convolutional kernel module into the original CNN model. The introduction of the selective convolutional kernel module enhances the network's focus on tumor features and effectively improves the network's performance. Finally, the trained model was used to process all the MRI image slices to achieve the classification of SCH and MEN patients by the voting prediction method.</p><p><strong>Results: </strong>Using the 5-fold cross-validation method, this new ResNet34-SKConv model achieves a classification accuracy of 92.32%, a specificity of 95.87%, and a F1-score of 93.54, respectively.</p><p><strong>Conclusion: </strong>This study demonstrated that a classification model using a deep learning network can be effective in achieving differential diagnosis of SCH and MEN. Thus, the new method has great potential for developing new computer-aided diagnosis and applications with future clinical practice.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"26-36\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241289745\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241289745","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRI classification and discrimination of spinal schwannoma and meningioma based on deep learning.

Backgroud: Schwannoma (SCH) and meningiomas (MEN) are the two most common primary spinal cord tumors. Differentiating between them preoperatively remains a clinical challenge due to the substantial overlap in their clinical presentation and imaging characteristics.

Objective: The objective of this study is to facilitate early diagnosis of patients and reduce clinician stress by constructing a deep learning-based classification model for automatic diagnosis of schwannoma and meningiomas using magnetic resonance images (MRI).

Methods: We retrospectively collected MRI images of 74 patients with pathologically confirmed schwannoma and meningiomas from 2015 to 2020 at a local hosipital, and constructed a CNN model based on the PyTorch's deep learning framework for the discrimination between the two. First, a modified feature fusion CNN model (ResNet34-SKConv) was trained by introducing a selective convolutional kernel module into the original CNN model. The introduction of the selective convolutional kernel module enhances the network's focus on tumor features and effectively improves the network's performance. Finally, the trained model was used to process all the MRI image slices to achieve the classification of SCH and MEN patients by the voting prediction method.

Results: Using the 5-fold cross-validation method, this new ResNet34-SKConv model achieves a classification accuracy of 92.32%, a specificity of 95.87%, and a F1-score of 93.54, respectively.

Conclusion: This study demonstrated that a classification model using a deep learning network can be effective in achieving differential diagnosis of SCH and MEN. Thus, the new method has great potential for developing new computer-aided diagnosis and applications with future clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信