在深度梯度信息指导下的Ct图像超分辨率。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-12-15 DOI:10.1177/08953996241289225
Ye Shen, Ningning Liang, Xinyi Zhong, Junru Ren, Zhizhong Zheng, Lei Li, Bin Yan
{"title":"在深度梯度信息指导下的Ct图像超分辨率。","authors":"Ye Shen, Ningning Liang, Xinyi Zhong, Junru Ren, Zhizhong Zheng, Lei Li, Bin Yan","doi":"10.1177/08953996241289225","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the hardware constraints of Computed Tomography (CT) imaging, acquiring high-resolution (HR) CT images in clinical settings poses a significant challenge. In recent years, convolutional neural networks have shown great potential in CT super-resolution (SR) problems. However, the reconstruction results of many deep learning-based SR methods have structural distortion and detail ambiguity. In this paper, a new SR network based on generative adversarial learning is proposed. The network consists of gradient branch and SR branch. Gradient branch is used to recover HR gradient maps. The network merges gradient image features of the gradient branch into the SR branch, offering gradient information guidance for super-resolution (SR) reconstruction. Further, the loss function of the network combines the image space loss function with the gradient loss and the gradient variance loss to further generate a more realistic detail texture. Compared to other comparison algorithms, the structural similarity index of the SR results obtained by the proposed method on simulation and experimental data has increased by 1.8% and 1.4%, respectively. The experimental results demonstrate that the proposed CT SR network exhibits superior performance in terms of structure preservation and detail restoration.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"58-71"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT image super-resolution under the guidance of deep gradient information.\",\"authors\":\"Ye Shen, Ningning Liang, Xinyi Zhong, Junru Ren, Zhizhong Zheng, Lei Li, Bin Yan\",\"doi\":\"10.1177/08953996241289225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the hardware constraints of Computed Tomography (CT) imaging, acquiring high-resolution (HR) CT images in clinical settings poses a significant challenge. In recent years, convolutional neural networks have shown great potential in CT super-resolution (SR) problems. However, the reconstruction results of many deep learning-based SR methods have structural distortion and detail ambiguity. In this paper, a new SR network based on generative adversarial learning is proposed. The network consists of gradient branch and SR branch. Gradient branch is used to recover HR gradient maps. The network merges gradient image features of the gradient branch into the SR branch, offering gradient information guidance for super-resolution (SR) reconstruction. Further, the loss function of the network combines the image space loss function with the gradient loss and the gradient variance loss to further generate a more realistic detail texture. Compared to other comparison algorithms, the structural similarity index of the SR results obtained by the proposed method on simulation and experimental data has increased by 1.8% and 1.4%, respectively. The experimental results demonstrate that the proposed CT SR network exhibits superior performance in terms of structure preservation and detail restoration.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"58-71\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241289225\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241289225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于计算机断层扫描(CT)成像的硬件限制,在临床环境中获取高分辨率(HR) CT图像提出了重大挑战。近年来,卷积神经网络在CT超分辨率(SR)问题中显示出巨大的潜力。然而,许多基于深度学习的SR方法的重建结果存在结构失真和细节模糊的问题。本文提出了一种新的基于生成对抗学习的SR网络。该网络由梯度分支和SR分支组成。梯度分支用于恢复HR梯度图。该网络将梯度分支的梯度图像特征合并到SR分支中,为超分辨率(SR)重建提供梯度信息指导。进一步,网络的损失函数将图像空间损失函数与梯度损失和梯度方差损失相结合,进一步生成更真实的细节纹理。与其他比较算法相比,本文方法在仿真和实验数据上得到的SR结果的结构相似指数分别提高了1.8%和1.4%。实验结果表明,所提出的CT SR网络在结构保存和细节恢复方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CT image super-resolution under the guidance of deep gradient information.

Due to the hardware constraints of Computed Tomography (CT) imaging, acquiring high-resolution (HR) CT images in clinical settings poses a significant challenge. In recent years, convolutional neural networks have shown great potential in CT super-resolution (SR) problems. However, the reconstruction results of many deep learning-based SR methods have structural distortion and detail ambiguity. In this paper, a new SR network based on generative adversarial learning is proposed. The network consists of gradient branch and SR branch. Gradient branch is used to recover HR gradient maps. The network merges gradient image features of the gradient branch into the SR branch, offering gradient information guidance for super-resolution (SR) reconstruction. Further, the loss function of the network combines the image space loss function with the gradient loss and the gradient variance loss to further generate a more realistic detail texture. Compared to other comparison algorithms, the structural similarity index of the SR results obtained by the proposed method on simulation and experimental data has increased by 1.8% and 1.4%, respectively. The experimental results demonstrate that the proposed CT SR network exhibits superior performance in terms of structure preservation and detail restoration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信