冠状动脉周围脂肪组织在非对比计算机断层扫描上的放射组学和深度学习特征预测非钙化斑块。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI:10.1177/08953996241292476
Junli Yu, Yan Ding, Li Wang, Shunxin Hu, Ning Dong, Jiangnan Sheng, Yingna Ren, Ziyue Wang
{"title":"冠状动脉周围脂肪组织在非对比计算机断层扫描上的放射组学和深度学习特征预测非钙化斑块。","authors":"Junli Yu, Yan Ding, Li Wang, Shunxin Hu, Ning Dong, Jiangnan Sheng, Yingna Ren, Ziyue Wang","doi":"10.1177/08953996241292476","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular events. However, there is no study combining radiomics with deep learning techniques to predict non-calcified plaques (NCP) in coronary artery at present.</p><p><strong>Objective: </strong>To investigate the value of combination of radiomics and deep learning features based on non-contrast computerized tomography (CT) scans of pericoronary adipose tissue (PCAT), integrating with clinical risk factors of patients, in identifying coronary inflammation and predicting the presence of NCP.</p><p><strong>Methods: </strong>The clinical and imaging data of 353 patients were analyzed. The region of interest (ROI) of PCAT was manually outlined on non-contrast CT scan images, like coronary CT calcium score sequential images, then the radiomics and deep learning features in ROIs were extracted respectively. In training set (Center 1), after performing feature selection, radiomics and deep learning feature models were established, meanwhile, clinical models were built. Finally, combined models were developed out via integrating clinical, radiomics, and deep learning features. The predictive performance of the four feature model groups (clinical, radiomics, deep learning, and three combination) was assessed by seven different machine learning models through generation of receiver operating characteristic curves (ROC) and the calculation of area under the curve (AUC), sensitivity, specificity, and accuracy. Furthermore, the predictive performance of each model was validated in an external validation set (Center 2).</p><p><strong>Results: </strong>For the single model comparation, eXtreme Gradient Boosting (XGBoost) showed the best performance among the clinical model group in the validation set. And Random Forest (RF) exhibited the best indicative performance not only among the radiomics feature group but also in the deep learning feature model group. What's more, among the combined model group, RF still displayed the best predictive performance, with the value of AUC, sensitivity, specificity, and accuracy in the validation set are 0.963, 0.857, 0.929, and 0.905.</p><p><strong>Conclusion: </strong>The RF model in the combined model group based on non-contrast CT scan PCAT can predict the presence of NCP more accurately and has the potential for preliminary screening of the NCP.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"96-108"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiomics and deep learning features of pericoronary adipose tissue on non-contrast computerized tomography for predicting non-calcified plaques.\",\"authors\":\"Junli Yu, Yan Ding, Li Wang, Shunxin Hu, Ning Dong, Jiangnan Sheng, Yingna Ren, Ziyue Wang\",\"doi\":\"10.1177/08953996241292476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular events. However, there is no study combining radiomics with deep learning techniques to predict non-calcified plaques (NCP) in coronary artery at present.</p><p><strong>Objective: </strong>To investigate the value of combination of radiomics and deep learning features based on non-contrast computerized tomography (CT) scans of pericoronary adipose tissue (PCAT), integrating with clinical risk factors of patients, in identifying coronary inflammation and predicting the presence of NCP.</p><p><strong>Methods: </strong>The clinical and imaging data of 353 patients were analyzed. The region of interest (ROI) of PCAT was manually outlined on non-contrast CT scan images, like coronary CT calcium score sequential images, then the radiomics and deep learning features in ROIs were extracted respectively. In training set (Center 1), after performing feature selection, radiomics and deep learning feature models were established, meanwhile, clinical models were built. Finally, combined models were developed out via integrating clinical, radiomics, and deep learning features. The predictive performance of the four feature model groups (clinical, radiomics, deep learning, and three combination) was assessed by seven different machine learning models through generation of receiver operating characteristic curves (ROC) and the calculation of area under the curve (AUC), sensitivity, specificity, and accuracy. Furthermore, the predictive performance of each model was validated in an external validation set (Center 2).</p><p><strong>Results: </strong>For the single model comparation, eXtreme Gradient Boosting (XGBoost) showed the best performance among the clinical model group in the validation set. And Random Forest (RF) exhibited the best indicative performance not only among the radiomics feature group but also in the deep learning feature model group. What's more, among the combined model group, RF still displayed the best predictive performance, with the value of AUC, sensitivity, specificity, and accuracy in the validation set are 0.963, 0.857, 0.929, and 0.905.</p><p><strong>Conclusion: </strong>The RF model in the combined model group based on non-contrast CT scan PCAT can predict the presence of NCP more accurately and has the potential for preliminary screening of the NCP.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"96-108\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996241292476\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241292476","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

背景:冠状动脉斑块炎症被认为是冠心病发生的关键因素。早期发现斑块并及时治疗动脉粥样硬化可有效降低心血管事件发生的风险。然而,目前还没有结合放射组学和深度学习技术预测冠状动脉非钙化斑块(NCP)的研究。目的:探讨基于冠状动脉周围脂肪组织(PCAT)非对比CT扫描的放射组学与深度学习特征相结合,并结合患者临床危险因素,在识别冠状动脉炎症和预测NCP存在方面的价值。方法:对353例患者的临床及影像学资料进行分析。在非对比CT扫描图像(如冠状动脉CT钙评分序列图像)上手动勾画PCAT的感兴趣区域(ROI),然后分别提取ROI中的放射组学特征和深度学习特征。在训练集(中心1)中,经过特征选择,建立放射组学和深度学习特征模型,同时建立临床模型。最后,通过整合临床、放射组学和深度学习特征,开发出组合模型。通过生成受试者工作特征曲线(ROC)和计算曲线下面积(AUC)、敏感性、特异性和准确性,采用7种不同的机器学习模型评估4种特征模型组(临床、放射组学、深度学习和3种组合)的预测性能。此外,在外部验证集中验证了每个模型的预测性能(中心2)。结果:对于单个模型比较,极端梯度增强(XGBoost)在验证集中的临床模型组中表现出最好的性能。随机森林(Random Forest, RF)不仅在放射组学特征组中表现最好,而且在深度学习特征模型组中表现最好。在联合模型组中,RF仍然表现出最好的预测效果,验证集的AUC值、灵敏度、特异性和准确性分别为0.963、0.857、0.929和0.905。结论:基于非对比CT扫描PCAT的联合模型组射频模型能更准确地预测NCP的存在,具有初步筛查NCP的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiomics and deep learning features of pericoronary adipose tissue on non-contrast computerized tomography for predicting non-calcified plaques.

Background: Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular events. However, there is no study combining radiomics with deep learning techniques to predict non-calcified plaques (NCP) in coronary artery at present.

Objective: To investigate the value of combination of radiomics and deep learning features based on non-contrast computerized tomography (CT) scans of pericoronary adipose tissue (PCAT), integrating with clinical risk factors of patients, in identifying coronary inflammation and predicting the presence of NCP.

Methods: The clinical and imaging data of 353 patients were analyzed. The region of interest (ROI) of PCAT was manually outlined on non-contrast CT scan images, like coronary CT calcium score sequential images, then the radiomics and deep learning features in ROIs were extracted respectively. In training set (Center 1), after performing feature selection, radiomics and deep learning feature models were established, meanwhile, clinical models were built. Finally, combined models were developed out via integrating clinical, radiomics, and deep learning features. The predictive performance of the four feature model groups (clinical, radiomics, deep learning, and three combination) was assessed by seven different machine learning models through generation of receiver operating characteristic curves (ROC) and the calculation of area under the curve (AUC), sensitivity, specificity, and accuracy. Furthermore, the predictive performance of each model was validated in an external validation set (Center 2).

Results: For the single model comparation, eXtreme Gradient Boosting (XGBoost) showed the best performance among the clinical model group in the validation set. And Random Forest (RF) exhibited the best indicative performance not only among the radiomics feature group but also in the deep learning feature model group. What's more, among the combined model group, RF still displayed the best predictive performance, with the value of AUC, sensitivity, specificity, and accuracy in the validation set are 0.963, 0.857, 0.929, and 0.905.

Conclusion: The RF model in the combined model group based on non-contrast CT scan PCAT can predict the presence of NCP more accurately and has the potential for preliminary screening of the NCP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信