Sepideh Cheheltani, Mahbubul H Shihan, Justin Parreno, Sondip K Biswas, Woo-Kuen Lo, Velia M Fowler
{"title":"在整个晶状体形状变化过程中,小鼠晶状体纤维细胞的深度和应变结构响应。","authors":"Sepideh Cheheltani, Mahbubul H Shihan, Justin Parreno, Sondip K Biswas, Woo-Kuen Lo, Velia M Fowler","doi":"10.1167/iovs.66.2.53","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To study the relationship between whole lens shape changes and fiber cell responses to externally applied loads.</p><p><strong>Methods: </strong>Freshly dissected mouse lenses were compressed by applying glass coverslips to the lens anterior, followed by fixation to preserve lens shape, and preparation for scanning electron microscopy (SEM). SEM images were collected from the outer cortex to the nucleus, and fiber cell end-to-end curvature and membrane paddle dimensions were measured using ImageJ.</p><p><strong>Results: </strong>At 23% and 29% axial strain, cortical fiber bundle curvature increased significantly compared to control uncompressed lenses, whereas nuclear fiber bundle curvature was unaffected. Outer cortical fiber cell membrane paddles and protrusions were dramatically distorted in a radial direction, with loss of paddle-associated small protrusions in compressed lenses compared to controls, but nuclear fiber cell morphologies were unchanged. The compression-induced increases in cortical fiber cell curvature and distortion of membrane paddles were reversible, with fiber cell morphologies returning to those of control lenses after the release of load.</p><p><strong>Conclusions: </strong>Whole lens shape changes due to an increase in axial strain result in increased fiber cell curvature and distorted membrane morphologies in cortical but not nuclear fiber cells, indicating that mechanical strain dissipates with depth. The recovery of normal cortical fiber cell curvature and membrane morphologies after the removal of load and lens rounding back to its original shape suggests elastic properties of the young and mature fiber cells and their membrane paddles.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":"66 2","pages":"53"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Depth and Strain-Dependent Structural Responses of Mouse Lens Fiber Cells During Whole Lens Shape Changes.\",\"authors\":\"Sepideh Cheheltani, Mahbubul H Shihan, Justin Parreno, Sondip K Biswas, Woo-Kuen Lo, Velia M Fowler\",\"doi\":\"10.1167/iovs.66.2.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To study the relationship between whole lens shape changes and fiber cell responses to externally applied loads.</p><p><strong>Methods: </strong>Freshly dissected mouse lenses were compressed by applying glass coverslips to the lens anterior, followed by fixation to preserve lens shape, and preparation for scanning electron microscopy (SEM). SEM images were collected from the outer cortex to the nucleus, and fiber cell end-to-end curvature and membrane paddle dimensions were measured using ImageJ.</p><p><strong>Results: </strong>At 23% and 29% axial strain, cortical fiber bundle curvature increased significantly compared to control uncompressed lenses, whereas nuclear fiber bundle curvature was unaffected. Outer cortical fiber cell membrane paddles and protrusions were dramatically distorted in a radial direction, with loss of paddle-associated small protrusions in compressed lenses compared to controls, but nuclear fiber cell morphologies were unchanged. The compression-induced increases in cortical fiber cell curvature and distortion of membrane paddles were reversible, with fiber cell morphologies returning to those of control lenses after the release of load.</p><p><strong>Conclusions: </strong>Whole lens shape changes due to an increase in axial strain result in increased fiber cell curvature and distorted membrane morphologies in cortical but not nuclear fiber cells, indicating that mechanical strain dissipates with depth. The recovery of normal cortical fiber cell curvature and membrane morphologies after the removal of load and lens rounding back to its original shape suggests elastic properties of the young and mature fiber cells and their membrane paddles.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":\"66 2\",\"pages\":\"53\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.66.2.53\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.66.2.53","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Depth and Strain-Dependent Structural Responses of Mouse Lens Fiber Cells During Whole Lens Shape Changes.
Purpose: To study the relationship between whole lens shape changes and fiber cell responses to externally applied loads.
Methods: Freshly dissected mouse lenses were compressed by applying glass coverslips to the lens anterior, followed by fixation to preserve lens shape, and preparation for scanning electron microscopy (SEM). SEM images were collected from the outer cortex to the nucleus, and fiber cell end-to-end curvature and membrane paddle dimensions were measured using ImageJ.
Results: At 23% and 29% axial strain, cortical fiber bundle curvature increased significantly compared to control uncompressed lenses, whereas nuclear fiber bundle curvature was unaffected. Outer cortical fiber cell membrane paddles and protrusions were dramatically distorted in a radial direction, with loss of paddle-associated small protrusions in compressed lenses compared to controls, but nuclear fiber cell morphologies were unchanged. The compression-induced increases in cortical fiber cell curvature and distortion of membrane paddles were reversible, with fiber cell morphologies returning to those of control lenses after the release of load.
Conclusions: Whole lens shape changes due to an increase in axial strain result in increased fiber cell curvature and distorted membrane morphologies in cortical but not nuclear fiber cells, indicating that mechanical strain dissipates with depth. The recovery of normal cortical fiber cell curvature and membrane morphologies after the removal of load and lens rounding back to its original shape suggests elastic properties of the young and mature fiber cells and their membrane paddles.
期刊介绍:
Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.