精油基乳剂可作为抗丁香假单胞菌的抗毒剂,减少猕猴桃上的细菌溃疡病。actinidiae

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Davide Danzi, Mario Thomas, Sara Cremonesi, Fateme Sadeghian, Giorgia Staniscia, Marco Andreolli, Michele Bovi, Annalisa Polverari, Lorenzo Tosi, Marta Bonaconsa, Silvia Lampis, Francesco Spinelli, Elodie Vandelle
{"title":"精油基乳剂可作为抗丁香假单胞菌的抗毒剂,减少猕猴桃上的细菌溃疡病。actinidiae","authors":"Davide Danzi,&nbsp;Mario Thomas,&nbsp;Sara Cremonesi,&nbsp;Fateme Sadeghian,&nbsp;Giorgia Staniscia,&nbsp;Marco Andreolli,&nbsp;Michele Bovi,&nbsp;Annalisa Polverari,&nbsp;Lorenzo Tosi,&nbsp;Marta Bonaconsa,&nbsp;Silvia Lampis,&nbsp;Francesco Spinelli,&nbsp;Elodie Vandelle","doi":"10.1186/s40538-025-00743-9","DOIUrl":null,"url":null,"abstract":"<div><p><i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa) poses a significant threat to global kiwifruit production, with current control measures proving insufficient and fostering resistance development. Essential oils (EOs) offer a promising alternative due to their multifaceted antimicrobial and antivirulence mechanisms. This study evaluated the antimicrobial activity of various EOs—cinnamon bark (CIN), oregano (ORE), clove bud (CLO), and thyme (THY)—against Psa, in terms of growth and virulence traits. CIN exhibited the highest antimicrobial activity, followed by ORE and CLO EOs, while THY EO was less effective. Encapsulation of EOs into organic polymer-based emulsions enhanced their antimicrobial efficacy by improving bioavailability and stability while reducing the required dosage. Notably, CIN and ORE EO emulsions effectively reduced disease symptoms in kiwifruit under both in vitro and in vivo conditions. Mechanistically, these EOs demonstrated dual activity: direct antimicrobial effects likely via membrane alteration and indirect antivirulence effects, including the inhibition of biofilm production and type III secretion system induction. Field trials further confirmed the potential of EO-based formulations to reduce disease incidence and severity over a growing season. This study underscores the potential of EO emulsions as sustainable, cost-effective plant protection agents, aligning with the goals of environmentally friendly crop management strategies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00743-9","citationCount":"0","resultStr":"{\"title\":\"Essential oil-based emulsions reduce bacterial canker on kiwifruit plants acting as antimicrobial and antivirulence agents against Pseudomonas syringae pv. actinidiae\",\"authors\":\"Davide Danzi,&nbsp;Mario Thomas,&nbsp;Sara Cremonesi,&nbsp;Fateme Sadeghian,&nbsp;Giorgia Staniscia,&nbsp;Marco Andreolli,&nbsp;Michele Bovi,&nbsp;Annalisa Polverari,&nbsp;Lorenzo Tosi,&nbsp;Marta Bonaconsa,&nbsp;Silvia Lampis,&nbsp;Francesco Spinelli,&nbsp;Elodie Vandelle\",\"doi\":\"10.1186/s40538-025-00743-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa) poses a significant threat to global kiwifruit production, with current control measures proving insufficient and fostering resistance development. Essential oils (EOs) offer a promising alternative due to their multifaceted antimicrobial and antivirulence mechanisms. This study evaluated the antimicrobial activity of various EOs—cinnamon bark (CIN), oregano (ORE), clove bud (CLO), and thyme (THY)—against Psa, in terms of growth and virulence traits. CIN exhibited the highest antimicrobial activity, followed by ORE and CLO EOs, while THY EO was less effective. Encapsulation of EOs into organic polymer-based emulsions enhanced their antimicrobial efficacy by improving bioavailability and stability while reducing the required dosage. Notably, CIN and ORE EO emulsions effectively reduced disease symptoms in kiwifruit under both in vitro and in vivo conditions. Mechanistically, these EOs demonstrated dual activity: direct antimicrobial effects likely via membrane alteration and indirect antivirulence effects, including the inhibition of biofilm production and type III secretion system induction. Field trials further confirmed the potential of EO-based formulations to reduce disease incidence and severity over a growing season. This study underscores the potential of EO emulsions as sustainable, cost-effective plant protection agents, aligning with the goals of environmentally friendly crop management strategies.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00743-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-025-00743-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00743-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

丁香假单胞菌。actinidiae (Psa)对全球猕猴桃生产构成重大威胁,目前的控制措施被证明是不足的,并促进了抗性的发展。精油(EOs)提供了一个有前途的替代品,由于其多方面的抗菌和抗毒机制。本研究从生长和毒力性状方面评价了肉桂皮(CIN)、牛至(ORE)、丁香芽(CLO)和百里香(THY)对Psa的抑菌活性。CIN的抑菌活性最高,ORE和CLO的抑菌活性次之,THY的抑菌活性较低。将EOs包封在有机聚合物乳液中,通过提高生物利用度和稳定性,同时减少所需剂量,增强了其抗菌功效。值得注意的是,CIN和oreeo乳剂在体内和体外条件下都能有效地减轻猕猴桃的疾病症状。在机制上,这些EOs表现出双重活性:可能通过膜改变的直接抗菌作用和间接抗毒作用,包括抑制生物膜的产生和III型分泌系统的诱导。田间试验进一步证实了以eo为基础的配方在一个生长季节降低疾病发病率和严重程度的潜力。这项研究强调了EO乳剂作为可持续的、具有成本效益的植物保护剂的潜力,与环境友好型作物管理战略的目标一致。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Essential oil-based emulsions reduce bacterial canker on kiwifruit plants acting as antimicrobial and antivirulence agents against Pseudomonas syringae pv. actinidiae

Pseudomonas syringae pv. actinidiae (Psa) poses a significant threat to global kiwifruit production, with current control measures proving insufficient and fostering resistance development. Essential oils (EOs) offer a promising alternative due to their multifaceted antimicrobial and antivirulence mechanisms. This study evaluated the antimicrobial activity of various EOs—cinnamon bark (CIN), oregano (ORE), clove bud (CLO), and thyme (THY)—against Psa, in terms of growth and virulence traits. CIN exhibited the highest antimicrobial activity, followed by ORE and CLO EOs, while THY EO was less effective. Encapsulation of EOs into organic polymer-based emulsions enhanced their antimicrobial efficacy by improving bioavailability and stability while reducing the required dosage. Notably, CIN and ORE EO emulsions effectively reduced disease symptoms in kiwifruit under both in vitro and in vivo conditions. Mechanistically, these EOs demonstrated dual activity: direct antimicrobial effects likely via membrane alteration and indirect antivirulence effects, including the inhibition of biofilm production and type III secretion system induction. Field trials further confirmed the potential of EO-based formulations to reduce disease incidence and severity over a growing season. This study underscores the potential of EO emulsions as sustainable, cost-effective plant protection agents, aligning with the goals of environmentally friendly crop management strategies.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信