基于双电子传输层的高探测率三元近红外有机光电探测器用于健康监测

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingchong Liang, Honglin Wang, Zhangmin Yin, Mengwei Jia, Minghao Wang, Dawei Yan, Xiaoya Hou and Jie Zhang
{"title":"基于双电子传输层的高探测率三元近红外有机光电探测器用于健康监测","authors":"Jingchong Liang, Honglin Wang, Zhangmin Yin, Mengwei Jia, Minghao Wang, Dawei Yan, Xiaoya Hou and Jie Zhang","doi":"10.1039/D4TC04940C","DOIUrl":null,"url":null,"abstract":"<p >Near-infrared organic photodetectors (NIR-OPDs) have significant potential for applications in biological imaging and medical diagnostics. However, the commonly high dark current density (<em>J</em><small><sub>D</sub></small>) and poor charge transport restrict the specific detectivity <img> of NIR-OPDs. In this study, <strong>PBDTDPP</strong> is incorporated as the third component in <strong>PTB7-Th</strong>:<strong>PC<small><sub>61</sub></small>BM</strong>-based OPDs to achieve a broader visible-near-infrared (vis-NIR) response. By varying the blend ratio, the ternary blend promotes the formation of a cascade energy heterojunction to enhance charge transport. Utilizing a <strong>PFN-Br</strong>/ZnO double electron transport layer (ETL) not only suppresses charge injection from the cathode, but also reduces trap density and minimizes charge recombination losses, thus improving charge transport and collection efficiency. Consequently, the <strong>PFN-Br</strong>/ZnO device achieves an ultralow <em>J</em><small><sub>D</sub></small> of 4.72 × 10<small><sup>−10</sup></small> A cm<small><sup>−2</sup></small>, a high <img> exceeding 10<small><sup>13</sup></small> jones and a −3 dB cutoff frequency (<em>f</em><small><sub>−3 dB</sub></small>) surpassing 1 MHz. Furthermore, the NIR-OPD devices have been successfully applied in arterial pulse monitoring sensors for health monitoring.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 8","pages":" 3917-3926"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High detectivity ternary near-infrared organic photodetectors based on double electron transport layer for health monitoring†\",\"authors\":\"Jingchong Liang, Honglin Wang, Zhangmin Yin, Mengwei Jia, Minghao Wang, Dawei Yan, Xiaoya Hou and Jie Zhang\",\"doi\":\"10.1039/D4TC04940C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Near-infrared organic photodetectors (NIR-OPDs) have significant potential for applications in biological imaging and medical diagnostics. However, the commonly high dark current density (<em>J</em><small><sub>D</sub></small>) and poor charge transport restrict the specific detectivity <img> of NIR-OPDs. In this study, <strong>PBDTDPP</strong> is incorporated as the third component in <strong>PTB7-Th</strong>:<strong>PC<small><sub>61</sub></small>BM</strong>-based OPDs to achieve a broader visible-near-infrared (vis-NIR) response. By varying the blend ratio, the ternary blend promotes the formation of a cascade energy heterojunction to enhance charge transport. Utilizing a <strong>PFN-Br</strong>/ZnO double electron transport layer (ETL) not only suppresses charge injection from the cathode, but also reduces trap density and minimizes charge recombination losses, thus improving charge transport and collection efficiency. Consequently, the <strong>PFN-Br</strong>/ZnO device achieves an ultralow <em>J</em><small><sub>D</sub></small> of 4.72 × 10<small><sup>−10</sup></small> A cm<small><sup>−2</sup></small>, a high <img> exceeding 10<small><sup>13</sup></small> jones and a −3 dB cutoff frequency (<em>f</em><small><sub>−3 dB</sub></small>) surpassing 1 MHz. Furthermore, the NIR-OPD devices have been successfully applied in arterial pulse monitoring sensors for health monitoring.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 8\",\"pages\":\" 3917-3926\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04940c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04940c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近红外有机光电探测器(NIR-OPDs)在生物成像和医学诊断方面具有重要的应用潜力。然而,普遍存在的高暗电流密度(JD)和较差的电荷输运限制了nir - opd的比探测能力。在本研究中,PBDTDPP作为PTB7-Th: pc61bm基opd的第三个组成部分被纳入,以实现更广泛的可见-近红外(visi - nir)响应。通过改变共混比,三元共混促进了级联能量异质结的形成,从而增强了电荷输运。利用PFN-Br/ZnO双电子传输层(ETL)不仅抑制了阴极的电荷注入,而且降低了陷阱密度,最大限度地减少了电荷复合损失,从而提高了电荷传输和收集效率。因此,PFN-Br/ZnO器件实现了4.72 × 10−10 A cm−2的超低JD,超过1013 jones的高JD和超过1mhz的−3db截止频率(f−3db)。此外,NIR-OPD装置已成功应用于动脉脉搏监测传感器中,用于健康监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High detectivity ternary near-infrared organic photodetectors based on double electron transport layer for health monitoring†

High detectivity ternary near-infrared organic photodetectors based on double electron transport layer for health monitoring†

Near-infrared organic photodetectors (NIR-OPDs) have significant potential for applications in biological imaging and medical diagnostics. However, the commonly high dark current density (JD) and poor charge transport restrict the specific detectivity of NIR-OPDs. In this study, PBDTDPP is incorporated as the third component in PTB7-Th:PC61BM-based OPDs to achieve a broader visible-near-infrared (vis-NIR) response. By varying the blend ratio, the ternary blend promotes the formation of a cascade energy heterojunction to enhance charge transport. Utilizing a PFN-Br/ZnO double electron transport layer (ETL) not only suppresses charge injection from the cathode, but also reduces trap density and minimizes charge recombination losses, thus improving charge transport and collection efficiency. Consequently, the PFN-Br/ZnO device achieves an ultralow JD of 4.72 × 10−10 A cm−2, a high exceeding 1013 jones and a −3 dB cutoff frequency (f−3 dB) surpassing 1 MHz. Furthermore, the NIR-OPD devices have been successfully applied in arterial pulse monitoring sensors for health monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信