{"title":"Extracellular Vesicles Separation and Biomedical Application Based on Affinity Recognition and Antifouling Coating Bifunctional Microsphere","authors":"Yuxing He, Jia Kang, Xuwen Yang, Nan Deng, Lingyun Hui, Yunxuan Yu, Yangyang Bian, Fufang Tao, Xinrui Duan, Jing Zhang","doi":"10.1021/acs.analchem.4c06347","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) are crucial mediators in various physiological and pathological processes, facilitating intercellular communication and offering potential as diagnostic disease markers. However, existing EVs separation methods have limitations that hinder their clinical application. In this study, we present a novel approach using bifunctional silica microspheres (SiO<sub>2</sub>-PTB-PS) for the specific, nondestructive isolation of EVs from complex biological media. The isolated EVs were subsequently used for direct cancer detection in clinical samples. The SiO<sub>2</sub>-PTB-PS microspheres, functionalized with a phosphatidylserine (PS) recognition peptide (PSpep), specifically bound to PS on the EVs surface. Additionally, an anti-adhesion coating on the silica microspheres minimized protein contamination, enhancing purity. This affinity-based recognition and antifouling strategy ensured high-purity EVs separation. Furthermore, we developed a detection system combining SiO<sub>2</sub>-PTB-PS microspheres with surface-enhanced Raman scattering (SERS) nanoprobes to identify protein tyrosine kinase 7 (PTK7) and epithelial cell adhesion (EpCAM) on the EVs membrane, achieving 80% precision in distinguishing cancer patients from healthy donors. The SiO<sub>2</sub>-PTB-PS microsphere system shows significant promise as a biotechnology tool, advancing the clinical application of EVs-based diagnostics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"15 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06347","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Extracellular Vesicles Separation and Biomedical Application Based on Affinity Recognition and Antifouling Coating Bifunctional Microsphere
Extracellular vesicles (EVs) are crucial mediators in various physiological and pathological processes, facilitating intercellular communication and offering potential as diagnostic disease markers. However, existing EVs separation methods have limitations that hinder their clinical application. In this study, we present a novel approach using bifunctional silica microspheres (SiO2-PTB-PS) for the specific, nondestructive isolation of EVs from complex biological media. The isolated EVs were subsequently used for direct cancer detection in clinical samples. The SiO2-PTB-PS microspheres, functionalized with a phosphatidylserine (PS) recognition peptide (PSpep), specifically bound to PS on the EVs surface. Additionally, an anti-adhesion coating on the silica microspheres minimized protein contamination, enhancing purity. This affinity-based recognition and antifouling strategy ensured high-purity EVs separation. Furthermore, we developed a detection system combining SiO2-PTB-PS microspheres with surface-enhanced Raman scattering (SERS) nanoprobes to identify protein tyrosine kinase 7 (PTK7) and epithelial cell adhesion (EpCAM) on the EVs membrane, achieving 80% precision in distinguishing cancer patients from healthy donors. The SiO2-PTB-PS microsphere system shows significant promise as a biotechnology tool, advancing the clinical application of EVs-based diagnostics.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.