利用机器学习势的非常规键合机制增加β-Ga2O3的异常导热系数

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wu-Xing Zhou , Cheng-Wei Wu , Hao-Ran Cao , Yu-Jia Zeng , Guofeng Xie , Gang Zhang
{"title":"利用机器学习势的非常规键合机制增加β-Ga2O3的异常导热系数","authors":"Wu-Xing Zhou ,&nbsp;Cheng-Wei Wu ,&nbsp;Hao-Ran Cao ,&nbsp;Yu-Jia Zeng ,&nbsp;Guofeng Xie ,&nbsp;Gang Zhang","doi":"10.1016/j.mtphys.2025.101677","DOIUrl":null,"url":null,"abstract":"<div><div><em>β-</em>Ga<sub>2</sub>O<sub>3</sub>, with its ultrawide band gap (∼4.9 eV) and high critical electric field, holds potential in power electronics but is limited by low thermal conductivity, which is critical to the performance and reliability because the high level of heat flux density induced by the extremely high levels of power density. Combining first-principles calculations, machine-learning potentials, and solving the phonon Boltzmann transport equation, we found that substituting octahedral-coordinated Ga with Al significantly enhances thermal conductivity from 100K to 800K. At room temperature, Al-substituted β-Ga2O3 achieves 38.91 W/mK, more than 2-fold that of pristine <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> (17.10 W/mK) and even higher than <em>β</em>-Al<sub>2</sub>O<sub>3</sub> (30.52 W/mK). This enhancement, unusual due to the heavier atomic mass and mixed mass distribution, is rooted in suppressed anharmonic characteristics caused by reduced bonding strength inhomogeneity. Our results may inspire the rational design of materials with tailored thermal properties through chemical bonding mechanisms.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"52 ","pages":"Article 101677"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential\",\"authors\":\"Wu-Xing Zhou ,&nbsp;Cheng-Wei Wu ,&nbsp;Hao-Ran Cao ,&nbsp;Yu-Jia Zeng ,&nbsp;Guofeng Xie ,&nbsp;Gang Zhang\",\"doi\":\"10.1016/j.mtphys.2025.101677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>β-</em>Ga<sub>2</sub>O<sub>3</sub>, with its ultrawide band gap (∼4.9 eV) and high critical electric field, holds potential in power electronics but is limited by low thermal conductivity, which is critical to the performance and reliability because the high level of heat flux density induced by the extremely high levels of power density. Combining first-principles calculations, machine-learning potentials, and solving the phonon Boltzmann transport equation, we found that substituting octahedral-coordinated Ga with Al significantly enhances thermal conductivity from 100K to 800K. At room temperature, Al-substituted β-Ga2O3 achieves 38.91 W/mK, more than 2-fold that of pristine <em>β</em>-Ga<sub>2</sub>O<sub>3</sub> (17.10 W/mK) and even higher than <em>β</em>-Al<sub>2</sub>O<sub>3</sub> (30.52 W/mK). This enhancement, unusual due to the heavier atomic mass and mixed mass distribution, is rooted in suppressed anharmonic characteristics caused by reduced bonding strength inhomogeneity. Our results may inspire the rational design of materials with tailored thermal properties through chemical bonding mechanisms.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"52 \",\"pages\":\"Article 101677\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000331\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000331","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

β-Ga2O3具有超宽带隙(~ 4.9 eV)和高临界电场,在电力电子领域具有潜力,但受到低导热系数的限制,这对性能和可靠性至关重要,因为极高的功率密度会引起高水平的热流密度。结合第一性原理计算、机器学习势和求解声子玻尔兹曼输运方程,我们发现用Al取代八面体协调的Ga显著提高了100K到800K的导热性。在室温下,al取代β-Ga2O3达到38.91 W/mK,是原始β-Ga2O3 (17.10 W/mK)的2倍以上,甚至高于β-Al2O3 (30.52 W/mK)。这种不寻常的增强是由于更重的原子质量和混合质量分布,其根源是由于键强度不均匀性降低而导致的抑制非谐波特性。我们的研究结果可能会启发通过化学键机制来合理设计具有定制热性能的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential
β-Ga2O3, with its ultrawide band gap (∼4.9 eV) and high critical electric field, holds potential in power electronics but is limited by low thermal conductivity, which is critical to the performance and reliability because the high level of heat flux density induced by the extremely high levels of power density. Combining first-principles calculations, machine-learning potentials, and solving the phonon Boltzmann transport equation, we found that substituting octahedral-coordinated Ga with Al significantly enhances thermal conductivity from 100K to 800K. At room temperature, Al-substituted β-Ga2O3 achieves 38.91 W/mK, more than 2-fold that of pristine β-Ga2O3 (17.10 W/mK) and even higher than β-Al2O3 (30.52 W/mK). This enhancement, unusual due to the heavier atomic mass and mixed mass distribution, is rooted in suppressed anharmonic characteristics caused by reduced bonding strength inhomogeneity. Our results may inspire the rational design of materials with tailored thermal properties through chemical bonding mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信