脱细胞猪食道的力学特性:初步结果

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Romane LESIEUR , Agnès DROCHON , Marlène DURAND
{"title":"脱细胞猪食道的力学特性:初步结果","authors":"Romane LESIEUR ,&nbsp;Agnès DROCHON ,&nbsp;Marlène DURAND","doi":"10.1016/j.medengphy.2025.104294","DOIUrl":null,"url":null,"abstract":"<div><div>Esophageal tissue engineering is a promising approach to create an esophageal substitute after surgical resection of a part of the organ. Regeneration of esophageal tissue may be achieved using some synthetic or biological scaffolds. In the present study, scaffolds are obtained through the decellularization of porcine esophagi. In view of future implantation, it is important to test the mechanical properties of the decellularized matrices and to compare them with the data obtained for native pig esophagi. Results of longitudinal and circumferential traction experiments as well as inflation and burst tests are presented. The results obtained for the compliance of porcine decellularized matrices are novel. It is concluded that the decellularized matrices are suitable for use as esophageal substitutes.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104294"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical properties of decellularized porcine esophagus: Preliminary results\",\"authors\":\"Romane LESIEUR ,&nbsp;Agnès DROCHON ,&nbsp;Marlène DURAND\",\"doi\":\"10.1016/j.medengphy.2025.104294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Esophageal tissue engineering is a promising approach to create an esophageal substitute after surgical resection of a part of the organ. Regeneration of esophageal tissue may be achieved using some synthetic or biological scaffolds. In the present study, scaffolds are obtained through the decellularization of porcine esophagi. In view of future implantation, it is important to test the mechanical properties of the decellularized matrices and to compare them with the data obtained for native pig esophagi. Results of longitudinal and circumferential traction experiments as well as inflation and burst tests are presented. The results obtained for the compliance of porcine decellularized matrices are novel. It is concluded that the decellularized matrices are suitable for use as esophageal substitutes.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":\"137 \",\"pages\":\"Article 104294\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135045332500013X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135045332500013X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

食管组织工程是在切除部分食道器官后制造食道替代品的一种很有前途的方法。食道组织的再生可以用一些合成或生物支架来实现。在本研究中,支架是通过猪食管的脱细胞获得的。考虑到未来的植入,测试脱细胞基质的力学性能并将其与天然猪食管的数据进行比较是很重要的。给出了纵向和周向牵引试验以及充气和爆破试验的结果。结果表明,猪脱细胞基质的顺应性是新颖的。结果表明,脱细胞基质适合作为食管代用品使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical properties of decellularized porcine esophagus: Preliminary results
Esophageal tissue engineering is a promising approach to create an esophageal substitute after surgical resection of a part of the organ. Regeneration of esophageal tissue may be achieved using some synthetic or biological scaffolds. In the present study, scaffolds are obtained through the decellularization of porcine esophagi. In view of future implantation, it is important to test the mechanical properties of the decellularized matrices and to compare them with the data obtained for native pig esophagi. Results of longitudinal and circumferential traction experiments as well as inflation and burst tests are presented. The results obtained for the compliance of porcine decellularized matrices are novel. It is concluded that the decellularized matrices are suitable for use as esophageal substitutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信