有机非晶体系中分子级电荷输运的解析

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hiroki Sato, Syun Kanda, Hironori Kaji
{"title":"有机非晶体系中分子级电荷输运的解析","authors":"Hiroki Sato, Syun Kanda, Hironori Kaji","doi":"10.1038/s41524-025-01526-4","DOIUrl":null,"url":null,"abstract":"<p>Charge transport in organic amorphous systems has been considered to occur by intermolecular hopping. However, it has been difficult to reveal even the intra- and intermolecular structures because of their amorphous nature. Therefore, the details of charge transport at the molecular level have not been clarified. Here, we investigate a detailed molecular-level insight into the charge transport in an amorphous film by the analysis of multiscale simulation. The charge mobility is normally described by a constant value but is found to be widely distributed with two orders of magnitude even in the 100 nm neat film. From the detailed analysis at the molecular level, it becomes clear that there are three types of charge traps; in addition to (1) the well-known traps due to the site energy difference, we found (2) traps caused by the distribution of molecular packings in the aggregate, and (3) those by charge hopping against the electric field. These traps are the origins of the widely distributed mobilities and the understanding of these traps is important to improve mobility.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"81 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of molecular-level charge transport in an organic amorphous system\",\"authors\":\"Hiroki Sato, Syun Kanda, Hironori Kaji\",\"doi\":\"10.1038/s41524-025-01526-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Charge transport in organic amorphous systems has been considered to occur by intermolecular hopping. However, it has been difficult to reveal even the intra- and intermolecular structures because of their amorphous nature. Therefore, the details of charge transport at the molecular level have not been clarified. Here, we investigate a detailed molecular-level insight into the charge transport in an amorphous film by the analysis of multiscale simulation. The charge mobility is normally described by a constant value but is found to be widely distributed with two orders of magnitude even in the 100 nm neat film. From the detailed analysis at the molecular level, it becomes clear that there are three types of charge traps; in addition to (1) the well-known traps due to the site energy difference, we found (2) traps caused by the distribution of molecular packings in the aggregate, and (3) those by charge hopping against the electric field. These traps are the origins of the widely distributed mobilities and the understanding of these traps is important to improve mobility.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01526-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01526-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机非晶体系中的电荷输运被认为是通过分子间跳变发生的。然而,由于其无定形性质,即使是分子内和分子间结构也难以揭示。因此,分子水平上电荷输运的细节尚不清楚。在这里,我们通过多尺度模拟分析,对非晶薄膜中的电荷输运进行了详细的分子水平的研究。电荷迁移率通常用一个常数来描述,但发现即使在100 nm的整齐薄膜中,电荷迁移率也以两个数量级广泛分布。从分子水平上的详细分析可以清楚地看出,存在三种类型的电荷陷阱;除了(1)众所周知的由位能差引起的陷阱外,我们还发现了(2)由分子填料在聚集体中的分布引起的陷阱,以及(3)由电荷对电场的跳跃引起的陷阱。这些陷阱是广泛分布的流动性的根源,了解这些陷阱对提高流动性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elucidation of molecular-level charge transport in an organic amorphous system

Elucidation of molecular-level charge transport in an organic amorphous system

Charge transport in organic amorphous systems has been considered to occur by intermolecular hopping. However, it has been difficult to reveal even the intra- and intermolecular structures because of their amorphous nature. Therefore, the details of charge transport at the molecular level have not been clarified. Here, we investigate a detailed molecular-level insight into the charge transport in an amorphous film by the analysis of multiscale simulation. The charge mobility is normally described by a constant value but is found to be widely distributed with two orders of magnitude even in the 100 nm neat film. From the detailed analysis at the molecular level, it becomes clear that there are three types of charge traps; in addition to (1) the well-known traps due to the site energy difference, we found (2) traps caused by the distribution of molecular packings in the aggregate, and (3) those by charge hopping against the electric field. These traps are the origins of the widely distributed mobilities and the understanding of these traps is important to improve mobility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信