Jun Chen;Mohammed Abugurain;Philip Dames;Shinkyu Park
{"title":"基于异构有限距离传感器的分布式多机器人多目标跟踪","authors":"Jun Chen;Mohammed Abugurain;Philip Dames;Shinkyu Park","doi":"10.1109/TRO.2025.3543303","DOIUrl":null,"url":null,"abstract":"Utilizing heterogeneous mobile sensors to actively gather information improves adaptability and reliability in extended environments. This article presents a cooperative multirobot multitarget search and tracking framework aimed at enhancing the efficiency of the heterogeneous sensor network, and consequently, improving the overall target tracking accuracy. The concept of <italic>normalized unused sensing capacity</i> is introduced to quantify the information a sensor is currently gathering relative to its theoretical maximum. This measurement can be computed using entirely local information and is applicable to various sensor models, distinguishing it from previous literature on the subject. It is then utilized to develop a heuristics distributed coverage control strategy for a heterogeneous sensor network, adaptively balancing the workload based on each sensor's current unused capacity. The algorithm is validated through a series of robot operating system (ROS) and <sc>MATLAB</small> simulations, demonstrating superior results compared to standard approaches that do not account for heterogeneity or current usage rates.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1755-1772"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Multirobot Multitarget Tracking Using Heterogeneous Limited-Range Sensors\",\"authors\":\"Jun Chen;Mohammed Abugurain;Philip Dames;Shinkyu Park\",\"doi\":\"10.1109/TRO.2025.3543303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing heterogeneous mobile sensors to actively gather information improves adaptability and reliability in extended environments. This article presents a cooperative multirobot multitarget search and tracking framework aimed at enhancing the efficiency of the heterogeneous sensor network, and consequently, improving the overall target tracking accuracy. The concept of <italic>normalized unused sensing capacity</i> is introduced to quantify the information a sensor is currently gathering relative to its theoretical maximum. This measurement can be computed using entirely local information and is applicable to various sensor models, distinguishing it from previous literature on the subject. It is then utilized to develop a heuristics distributed coverage control strategy for a heterogeneous sensor network, adaptively balancing the workload based on each sensor's current unused capacity. The algorithm is validated through a series of robot operating system (ROS) and <sc>MATLAB</small> simulations, demonstrating superior results compared to standard approaches that do not account for heterogeneity or current usage rates.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"1755-1772\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891856/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891856/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Distributed Multirobot Multitarget Tracking Using Heterogeneous Limited-Range Sensors
Utilizing heterogeneous mobile sensors to actively gather information improves adaptability and reliability in extended environments. This article presents a cooperative multirobot multitarget search and tracking framework aimed at enhancing the efficiency of the heterogeneous sensor network, and consequently, improving the overall target tracking accuracy. The concept of normalized unused sensing capacity is introduced to quantify the information a sensor is currently gathering relative to its theoretical maximum. This measurement can be computed using entirely local information and is applicable to various sensor models, distinguishing it from previous literature on the subject. It is then utilized to develop a heuristics distributed coverage control strategy for a heterogeneous sensor network, adaptively balancing the workload based on each sensor's current unused capacity. The algorithm is validated through a series of robot operating system (ROS) and MATLAB simulations, demonstrating superior results compared to standard approaches that do not account for heterogeneity or current usage rates.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.