Minqiang Liu , Xuqiang Liu , Guoping Xiao , Bobo Wang , Sanyong Zou , Le Zhong , Xianguo Xu , Chao Zeng , Shuyi Zhang , Guanghai Tang , Fang Deng , Abuduwayiti Aierken
{"title":"Comparison of radiation effects of LM and UMM structure GaAs triple-junction solar cells under 1 MeV neutron irradiation","authors":"Minqiang Liu , Xuqiang Liu , Guoping Xiao , Bobo Wang , Sanyong Zou , Le Zhong , Xianguo Xu , Chao Zeng , Shuyi Zhang , Guanghai Tang , Fang Deng , Abuduwayiti Aierken","doi":"10.1016/j.sse.2025.109087","DOIUrl":null,"url":null,"abstract":"<div><div>The output performances of lattice-matched (LM) and upright metamorphic (UMM) GaAs triple-junction solar cells under 1 MeV neutron irradiation were studied. The results show that the electrical performance, including open-circuit voltage, short-circuit current, maximum output power and fill factor of the solar cells were degraded seriously with the increase of neutron irradiation fluence. Meanwhile, the series resistance and the shunt resistance of solar cells are increased and decreased, respectively, when the neutron irradiation fluence increased. The degradation of maximum output power in LM and UMM GaAs cells is about the same level of 72.9 % and 72.3 % of its initial values, respectively, when the irradiation fluence is reached 6 × 10<sup>12</sup> n/cm<sup>2</sup>. By comparing the integrated current densities, it was found out that the current-limiting subcell in LM cells s always GaAs middle cell, and in the UMM cell, the current limiting unit is changed from GaInP top subcell to GaInAs middle subcell after high fluence neutron irradiation.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"226 ","pages":"Article 109087"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000322","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparison of radiation effects of LM and UMM structure GaAs triple-junction solar cells under 1 MeV neutron irradiation
The output performances of lattice-matched (LM) and upright metamorphic (UMM) GaAs triple-junction solar cells under 1 MeV neutron irradiation were studied. The results show that the electrical performance, including open-circuit voltage, short-circuit current, maximum output power and fill factor of the solar cells were degraded seriously with the increase of neutron irradiation fluence. Meanwhile, the series resistance and the shunt resistance of solar cells are increased and decreased, respectively, when the neutron irradiation fluence increased. The degradation of maximum output power in LM and UMM GaAs cells is about the same level of 72.9 % and 72.3 % of its initial values, respectively, when the irradiation fluence is reached 6 × 1012 n/cm2. By comparing the integrated current densities, it was found out that the current-limiting subcell in LM cells s always GaAs middle cell, and in the UMM cell, the current limiting unit is changed from GaInP top subcell to GaInAs middle subcell after high fluence neutron irradiation.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.