基于InGaZnO通道的NVM中HfO2电荷捕获层电荷存储和保留特性的改进

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingwen Chen , Fucheng Wang , Zhong Pan , Jang-Kun Song , Yong-Sang Kim , Muhammad Quddamah Khokhar , Junsin Yi
{"title":"基于InGaZnO通道的NVM中HfO2电荷捕获层电荷存储和保留特性的改进","authors":"Jingwen Chen ,&nbsp;Fucheng Wang ,&nbsp;Zhong Pan ,&nbsp;Jang-Kun Song ,&nbsp;Yong-Sang Kim ,&nbsp;Muhammad Quddamah Khokhar ,&nbsp;Junsin Yi","doi":"10.1016/j.sse.2025.109077","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, with the widespread application of semiconductor thin-film memory devices, the focus of research has gradually shifted to how to fabricate memory with larger storage windows and longer retention times. This study employs the rapid thermal annealing (RTA) method to conduct multiple annealing treatments on charge trapping memory (CTM) devices that use HfO<sub>2</sub> as the charge trapping layer, the leakage current of the device is reduced, and the negative deviation of threshold voltage is improved. During the experiments, the charge trapping layer (CTL) and tunneling layer (TL) of the devices were deposited, and a 50 nm IGZO thin film was deposited as the channel layer. The study investigates the memory performance of TFT-NVM (thin film transistor non-volatile memory) after RTA under different conditions. The results showed that the TFT-NVM with the Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub>/SiO<sub>2</sub> structure has a large memory window (1.4 V) and good charge retention (&gt;71.39 %) before O<sub>2</sub> annealing treatment. This provides a feasible approach for future research on TFT-NVM.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"226 ","pages":"Article 109077"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of charge storage and retention characteristics of HfO2 Charge-Trapping layer in NVM based on InGaZnO channels\",\"authors\":\"Jingwen Chen ,&nbsp;Fucheng Wang ,&nbsp;Zhong Pan ,&nbsp;Jang-Kun Song ,&nbsp;Yong-Sang Kim ,&nbsp;Muhammad Quddamah Khokhar ,&nbsp;Junsin Yi\",\"doi\":\"10.1016/j.sse.2025.109077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, with the widespread application of semiconductor thin-film memory devices, the focus of research has gradually shifted to how to fabricate memory with larger storage windows and longer retention times. This study employs the rapid thermal annealing (RTA) method to conduct multiple annealing treatments on charge trapping memory (CTM) devices that use HfO<sub>2</sub> as the charge trapping layer, the leakage current of the device is reduced, and the negative deviation of threshold voltage is improved. During the experiments, the charge trapping layer (CTL) and tunneling layer (TL) of the devices were deposited, and a 50 nm IGZO thin film was deposited as the channel layer. The study investigates the memory performance of TFT-NVM (thin film transistor non-volatile memory) after RTA under different conditions. The results showed that the TFT-NVM with the Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub>/SiO<sub>2</sub> structure has a large memory window (1.4 V) and good charge retention (&gt;71.39 %) before O<sub>2</sub> annealing treatment. This provides a feasible approach for future research on TFT-NVM.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"226 \",\"pages\":\"Article 109077\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003811012500022X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012500022X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着半导体薄膜存储器件的广泛应用,研究的重点逐渐转向如何制造具有更大存储窗口和更长的存储时间的存储器。本研究采用快速热退火(RTA)方法对以HfO2为电荷捕获层的电荷捕获存储器(CTM)器件进行多次退火处理,降低了器件的漏电流,改善了阈值电压的负偏差。在实验中,沉积了器件的电荷捕获层(CTL)和隧道层(TL),并沉积了50 nm的IGZO薄膜作为通道层。研究了薄膜晶体管非易失性存储器(TFT-NVM)在不同条件下经过RTA后的存储性能。结果表明:在O2退火处理前,Al2O3/HfO2/SiO2结构的TFT-NVM具有较大的记忆窗口(1.4 V)和良好的电荷保留率(> 71.39%);这为未来TFT-NVM的研究提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of charge storage and retention characteristics of HfO2 Charge-Trapping layer in NVM based on InGaZnO channels
In recent years, with the widespread application of semiconductor thin-film memory devices, the focus of research has gradually shifted to how to fabricate memory with larger storage windows and longer retention times. This study employs the rapid thermal annealing (RTA) method to conduct multiple annealing treatments on charge trapping memory (CTM) devices that use HfO2 as the charge trapping layer, the leakage current of the device is reduced, and the negative deviation of threshold voltage is improved. During the experiments, the charge trapping layer (CTL) and tunneling layer (TL) of the devices were deposited, and a 50 nm IGZO thin film was deposited as the channel layer. The study investigates the memory performance of TFT-NVM (thin film transistor non-volatile memory) after RTA under different conditions. The results showed that the TFT-NVM with the Al2O3/HfO2/SiO2 structure has a large memory window (1.4 V) and good charge retention (>71.39 %) before O2 annealing treatment. This provides a feasible approach for future research on TFT-NVM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信